Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.
This paper investigated the feasibility for improved detection of human respiration using data fusion based on a multistatic ultra-wideband (UWB) radar. UWB-radar-based respiration detection is an emerging technology that has great promise in practice. It can be applied to remotely sense the presence of a human target for through-wall surveillance, post-earthquake search and rescue, etc. In these applications, a human target's position and posture are not known a priori. Uncertainty of the two factors results in a body orientation issue of UWB radar, namely the human target's thorax is not always facing the radar. Thus, the radial component of the thorax motion due to respiration decreases and the respiratory motion response contained in UWB radar echoes is too weak to be detected. To cope with the issue, this paper used multisensory information provided by the multistatic UWB radar, which took the form of impulse radios and comprised one transmitting and four separated receiving antennas. An adaptive Kalman filtering algorithm was then designed to fuse the UWB echo data from all the receiving channels to detect the respiratory-motion response contained in those data. In the experiment, a volunteer's respiration was correctly detected when he curled upon a camp bed behind a brick wall. Under the same scenario, the volunteer's respiration was detected based on the radar's single transmitting-receiving channels without data fusion using conventional algorithm, such as adaptive line enhancer and single-channel Kalman filtering. Moreover, performance of the data fusion algorithm was experimentally investigated with different channel combinations and antenna deployments. The experimental results show that the body orientation issue for human respiration detection via UWB radar can be dealt well with the multistatic UWB radar and the Kalman-filter-based data fusion, which can be applied to improve performance of UWB radar in real applications.
Impulse radio ultrawideband radar is a critical remote sensing tool for life detection and noncontact monitoring of vital signals. In noncontact monitoring via radar, the disturbance from respiration and environmental noise is considered critical for the estimation of heart rates. However, the heartbeat signal is generally distorted by breath harmonics and fluctuations in the time domain, and the frequencies of the vital signals are closely situated; thus, it is difficult to employ an ordinary frequency filter for separation. To solve this problem, a novel method was developed to extract heartbeat information. In this study, convolutional sparse coding, which is an unsupervised machine learning algorithm, was first used to model the heartbeat signal in the time domain, given the respiration and relative artifacts. The proposed scheme was then used to decompose the time-domain signals and directly obtain the heartbeat component by exploiting the sparsity of the heartbeat signal in the time domain. Furthermore, the performance of the proposed scheme was improved using a noise-assisted method, and the process was accelerated by learning from the K-singular value decomposition strategy. Finally, by testing the vital sign signals collected from the finite differences time-domain simulation and experiments, the results obtained indicate that the proposed approach is effective for the extraction of low-amplitude heartbeat signals from the respiration signal, and that it significantly improves the accuracy of heart rate evaluation.INDEX TERMS Convolutional sparse coding, heart rate, finite-difference time-domain, respiration rate, ultrawideband radar, noise-assisted method.
Judgment and early danger warning of obstructive sleep apnea (OSA) is meaningful to the diagnosis of sleep illness. This paper proposed a novel method based on wavelet information entropy spectrum to make an apnea judgment of the OSA respiratory signal detected by bio-radar in wavelet domain. It makes full use of the features of strong irregularity and disorder of respiratory signal resulting from the brain stimulation by real, low airflow during apnea. The experimental results demonstrated that the proposed method is effective for detecting the occurrence of sleep apnea and is also able to detect some apnea cases that the energy spectrum method cannot. Ultimately, the comprehensive judgment accuracy resulting from 10 groups of OSA data is 93.1%, which is promising for the non-contact aided-diagnosis of the OSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.