A nonpathogenic mild strain is essential for control of plant viruses by cross protection. Three amino acid changes, Arg(180)-->Ile(180) (GA mutation), Phe(205)-->Leu(205) (GB mutation), and Glu(396)-->Asn(396) (GC mutation), of the conserved motifs of the helper component-protease (HC-Pro) of a severe strain TW-TN3 of Zucchini yellow mosaic virus (ZYMV), a member of the genus Potyvirus, were generated from an infectious cDNA clone that carried a green fluorescent protein reporter. The infectivity of individual mutants containing single, double, or triple mutations was assayed on local and systemic hosts. On Chenopodium quinoa plants, the GB mutant induced necrotic lesions; the GA, GC, and GBC mutants induced chlorotic spots; and the GAB and GAC mutants induced local infection only visualized by fluorescence microscopy. On squash plants, the GA, GB, GC, and GBC mutants caused milder mosaic; the GAC mutant induced slight leaf mottling followed by recovering; and the GAB mutant did not induce conspicuous symptoms. Also, the GAC mutant, but not the GAB mutant, conferred complete cross protection against the parental virus carrying a mite allergen as a reporter. When tested on transgene-silenced transgenic squash, the ability of posttranscriptional gene silencing suppression of the mutated HC-Pro of GAC was not significantly affected. We concluded that the mutations of the HC-Pro of ZYMV reduce the degrees of pathogenicity on squash and also abolish the ability for eliciting the hypersensitive reaction on C. quinoa, and that the mutant GAC is a useful mild strain for cross protection.
The complete nucleotide sequence of the RNA genome of papaya ringspot virus (PRSV) was determined from four overlapping cDNA clones and by direct sequencing of viral RNA. The genomic RNA is 10326 nucleotides in length, excluding the poly(A) tract, and contains one large open reading frame that starts at nucleotide positions 86 to 88 and ends at positions 10118 to 10120, encoding a polyprotein of 3344 amino acids. The highly conserved sequence AAAUAAAANANCUCAACACAACAUA at the 5' end of the RNA of PRSV and those of the other five reported potyviruses shows 80% similarity, suggesting that this region may play a common important role for potyvirus replication. Two cleavage sites of the polyprotein were determined by amino acid sequencing of the N termini of helper component (HC-Pro, amorphous inclusion) and cylindrical inclusion (CI) proteins. Other cleavage sites were predicted by analogy with the other potyviruses. The genetic organization of PRSV is similar to that of the other potyviruses except that the first protein processed from the N terminus of the polyprotein (NT protein) has an Mr of 63K, 18K to 34K larger than those of the other potyviruses. The cleavage site for liberating the N terminus of the HCPro protein was found at the same location downstream from the consensus sequence FI(V)VRG as that reported for tobacco vein mottling virus. The NT protein of potyviruses is the most variable and may be considered important for identification of individual potyviruses. The most conserved protein ofpotyviruses appears to be the Nlb protein, the putative polymerase for the replication of the potyviral RNA. The genetic organization of PRSV RNA is tentatively proposed to be VPg-5' leader-63K NT-52K HC-Pro-46K-72K CI-6K-48K NIa-59K NIb-35K coat protein-3' noncoding region-poly(A) tract.
Characteristic symptoms of Pierce's disease (PD) in grapevines (Vitis vinifera L.) were observed in 2002 in the major grape production fields of central Taiwan. Disease severity in vineyards varied, and all investigated grape cultivars were affected. Diseased tissues were collected from fields for subsequent isolation and characterization of the causal agent of the disease (Xylella fastidiosa). Koch's postulates were fulfilled by artificially inoculating two purified PD bacteria to grape cultivars Kyoho, Honey Red and Golden Muscat. The inoculated plants developed typical leafscorching symptoms, and similar disease severity developed in the three cultivars from which the bacterium was readily re-isolated, proving that the leaf scorch of grapevines in Taiwan is caused by the fastidious X. fastidiosa. This confirmed PD of grapevines is also the first report from the Asian Continent. Phylogenetic analyses were performed by comparing the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer region (16S-23S ITS) of 12 PD strains from Taiwan with the sequences of 13 X. fastidiosa strains from different hosts and different geographical areas. Results showed that the PD strains of Taiwan were closely related to the American X. fastidiosa grape strains but not to the pear strains of Taiwan, suggesting that the X. fastidiosa grape and pear strains of Taiwan may have evolved independently from each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.