Due to the ubiquitous dynamics of industrial processes, the variable time lag raises great challenge to the high-precision industrial process monitoring. To this end, a process monitoring method based on the dynamic autoregressive latent variable model is proposed in this paper. First, from the perspective of process data, a dynamic autoregressive latent variable model (DALM) with process variables as input and quality variables as output is constructed to adapt to the variable time lag characteristic. In addition, a fusion Bayesian filtering, smoothing and expectation maximization algorithm is used to identify model parameters. Then, the process monitoring method based on DALM is constructed, in which the process data are filtered online to obtain the latent space distribution of the current state, and T2 statistics are constructed. Finally, by comparing with an existing method, the feasibility and effectiveness of the proposed method is tested on the sintering process of ternary cathode materials. Detailed comparisons show the superiority of the proposed method.
In industrial processes, the composition of raw material and the production environment are complex and changeable, which makes the production process have multiple steady states. In this situation, it is difficult for the traditional single-mode monitoring methods to accurately detect the process abnormalities. To this end, a multimode monitoring method based on the factor dynamic autoregressive hidden variable model (FDALM) for industrial processes is proposed in this paper. First, an improved affine propagation clustering algorithm to learn the model modal factors is adopted, and the FDALM is constructed by combining multiple high-order hidden state Markov chains through the factor modeling technology. Secondly, a fusion algorithm based on Bayesian filtering, smoothing, and expectation-maximization is adopted to identify model parameters. The Lagrange multiplier formula is additionally constructed to update the factor coefficients by using the factor constraints in the solving. Moreover, the online Bayesian inference is adopted to fuse the information of different factor modes and obtain the fault posterior probability, which can improve the overall monitoring effect of the model. Finally, the proposed method is applied in the sintering process of ternary cathode material. The results show that the fault detection rate and false alarm rate of this method are improved obviously compared with the traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.