In mobile edge computing (MEC), smart mobile devices (SMDs) with limited computation resources and battery lifetime can offload their computing-intensive tasks to MEC servers, thus to enhance the computing capability and reduce the energy consumption of SMDs. Nevertheless, offloading tasks to the edge incurs additional transmission time and thus higher execution delay. This paper studies the trade-off between the completion time of applications and the energy consumption of SMDs in MEC networks. The problem is formulated as a multiobjective computation offloading problem (MCOP), where the task precedence, i.e. ordering of tasks in SMD applications, is introduced as a new constraint in the MCOP. An improved multiobjective evolutionary algorithm based on decomposition (MOEA/D) with two performance enhancing schemes is proposed. 1) The problem-specific population initialization scheme uses a latency-based execution location initialization method to initialize the execution location (i.e. either local SMD or MEC server) for each task. 2) The dynamic voltage and frequency scaling based energy conservation scheme helps to decrease the energy consumption without increasing the completion time of applications. The simulation results clearly demonstrate that the proposed algorithm outperforms a number of state-of-the-art heuristics and meta-heuristics in terms of the convergence and diversity of the obtained nondominated solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.