Crack lithography is important for preparing microstructured materials. This strategic use of cracking breaks with the traditional idea that cracks are unwanted and has great potential for high-resolution and high-throughput production. However, the ability to control nanoscale crack patterning is still insufficient. Here, we present a nanoscale, programmable angle-dependent technique to control crack generation that relies on standard electron-beam lithography. Multiscale patterns of poly(methyl methacrylate) of arbitrary shape, geometric size, and large area were obtained, greatly expanding the processing capacity of electron-beam lithography. In addition, we observed the interaction between adjacent structures and cracks, which resulted in crack suppression or second-order cracks. We also demonstrated that angle-dependent nanoscale cracks can be used in physical unclonable functions and have great application prospects in the field of information security. We believe that our strategy for programmable nanoscale crack patterning provides new opportunities and perspectives for nanofabrication.
Formation of thermal vacancies in icosahedral Zn 65 Mg 25 Er 10 quasicrystals has been specifically studied from room temperature to about 720 K by positron annihilation spectroscopy employing two-detector coincident Doppler broadening techniques.Significant vacancy formation was observed for temperatures higher than 0.6T m .An apparent vacancy formation enthalpy of 1.2 eV was determined. The results are discussed in comparison with high temperature vacancy processes in quasicrystals as well as in other complex solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.