A series of tricyclic quinoxalinediones, 5,6-dihydro-1H-pyrrolo[1,2,3-de]quinoxaline-2,3-diones and 6,7-dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-diones, were synthesized and was evaluated for their affinity for the glycine binding site of the NMDA receptor using a [3H]-5,7-dichlorokynurenic acid binding assay. The six-membered ring-fused tricyclic quinoxalinedione 18g (Ki = 9.9 nM) displayed high affinity for the glycine site. The anilide derivative 20g (Ki = 2.6 nM) was 4-fold more potent than 18g and as potent as L-689,560, one of the most potent glycine antagonists so far prepared. Although the carboxylic acid derivative of the corresponding five-membered ring-fused tricyclic quinoxalinedione 18e (Ki = 7.3 nM) had affinity comparable to that of 18g, the anilide derivative 20e largely decreased in the affinity in contrast to 20g. Enantiomers 23g, 24g, 25g, and 26g were prepared and tested. Only the S enantiomer 25g (Ki = 0.96 nM) retained the affinity among the anilide derivatives, whereas both enantiomers 23g (Ki = 2.3 nM) and 24g (Ki = 9.6 nM) were active among the carboxylic acid derivatives. The origin of the high affinity of carboxylic acid derivatives such as 18e and 18g would be a charge-charge interaction between the anionic carboxylate residues of the compounds and the cationic proton-donor site in the receptor.
A series of cyclic imides bearing a omega-(4-aryl and 4-heteroaryl-1-piperazinyl)alkyl moieties was synthesized and tested in vivo for anxiolytic activity. The in vitro binding affinities of these compounds were also examined for 5-HT1A receptor sites. Structure-activity relationships within these series are discussed. One of these compounds, (1R*,2S*,-3R*,4S*)-N-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,3- bicyclo[2.2.1]heptanedicarboximide (1: tandospirone), was found to be equipotent with buspirone in its anxiolytic activity and more anxio-selective than buspirone and diazepam. Tandospirone (1) is currently undergoing clinical evaluation as a selective anxiolytic agent.
Cyclic imides bearing omega-(4-benzisothiazol-3-yl-1-piperazinyl)alkyl moieties were synthesized and tested for antipsychotic activity. The in vitro binding affinities of these compounds were examined for dopamine 2 (D2) and serotonin 2 (5-HT2) receptor sites. Structure-activity relationships within these series are discussed. One of these compounds, N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]-1,2-cis- cyclohexamedicarboximide (SM-9018), was found to be more potent and more selective in vivo than tiospirone in its antipsychotic activity. SM-9018 (17) is currently undergoing clinical evaluation as a selective antipsychotic agent.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.