Ubiquitination is an essential post-translational modification that regulates signalling and protein turnover in eukaryotic cells. Specificity of ubiquitination is driven by ubiquitin E3 ligases, many of which remain poorly understood. One such is the mammalian muskelin/RanBP9/CTLH complex that includes eight proteins, five of which (RanBP9/RanBPM, TWA1, MAEA, Rmnd5 and muskelin), share striking similarities of domain architecture and have been implicated in regulation of cell organisation. In budding yeast, the homologous GID complex acts to down-regulate gluconeogenesis. In both complexes, Rmnd5/GID2 corresponds to a RING ubiquitin ligase. To better understand this E3 ligase system, we conducted molecular phylogenetic and sequence analyses of the related components. TWA1, Rmnd5, MAEA and WDR26 are conserved throughout all eukaryotic supergroups, albeit WDR26 was not identified in Rhizaria. RanBPM is absent from Excavates and from some sub-lineages. Armc8 and c17orf39 were represented across unikonts but in bikonts were identified only in Viridiplantae and in O. trifallax within alveolates. Muskelin is present only in Opisthokonts. Phylogenetic and sequence analyses of the shared LisH and CTLH domains of RanBPM, TWA1, MAEA and Rmnd5 revealed closer relationships and profiles of conserved residues between, respectively, Rmnd5 and MAEA, and RanBPM and TWA1. Rmnd5 and MAEA are also related by the presence of conserved, variant RING domains. Examination of how N- or C-terminal domain deletions alter the sub-cellular localisation of each protein in mammalian cells identified distinct contributions of the LisH domains to protein localisation or folding/stability. In conclusion, all components except muskelin are inferred to have been present in the last eukaryotic common ancestor. Diversification of this ligase complex in different eukaryotic lineages may result from the apparently fast evolution of RanBPM, differing requirements for WDR26, Armc8 or c17orf39, and the origin of muskelin in opisthokonts as a RanBPM-binding protein.
It has been generally accepted that both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. However, accumulating evidence has shown that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation. LDR can stimulate proliferation of normal cells and activate their defense systems, while these biological effects are not observed in some cancer cell types. Although there is still no concordance on this matter, the fact that LDR has the potential to enhance the effects of cancer therapeutics and reduce the toxic side effects of anti-cancer therapy has garnered significant interest. Here, we provide an overview of the current knowledge regarding the experimental data detailing the different responses of normal and cancer tissues to LDR, the underlying mechanisms, and its significance in clinical application.
PurposeMHC class I chain related-proteins A (MICA) and B (MICB) are natural killer group 2D ligands that mediate tumor surveillance. Several studies have suggested that MICA/B levels predict clinical outcomes in patients with cancer; however, this remains contentious. Here, we present a systematic review and meta-analysis of available studies of the prognostic value of MICA/B in cancer.Materials and MethodsWe searched PubMed, Embase, Clinicaltrials.gov, and Cochrane Library to identify studies published from inception to July 2017 that assessed MICA/B in patients with cancer. The hazard ratio (HR) and 95% confidence interval (CI) of MICA/B were extracted for overall survival (OS) analysis.ResultsA total of 19 studies comprising 2,588 patients with 10 different types of cancer were included in the study. Low sMICA/B levels were found associated with significantly longer OS (HR = 1.65, 95% CI [1.42–1.92], P < 0.00001). Patients with cancers of digestive system that exhibited high MICA/B expression had significantly longer OS in (HR = 0.56, 95% CI [0.39–0.80], P = 0.002) compared with those with lower MICA/B expression (I2 = 35%, P = 0.18).ConclusionsSerum soluble MICA/B represents a potential prognostic marker in various human cancers. High cell-surface MICA/B expression in cancers of the digestive system was found associated with increased survival.
PurposeWe did a meta-analysis to compare the efficacy and safety of neoadjuvant chemotherapy (NACT) followed by concurrent chemoradiotherapy (CCRT) versus CCRT with or without adjuvant chemotherapy (AC) for patients with locoregionally advanced nasopharyngeal carcinoma based on randomized controlled trials.MethodsWe searched PubMed, Embase, Web of Science, ClinicalTrials.gov, Chinese National Knowledge Infrastructure, and meeting proceedings of major relevant conferences to identify published and unpublished randomized controlled trials. Progression-free survival (PFS) was the primary endpoint.ResultsThis meta-analysis included 9 randomized clinical trials with 2215 patients. NACT followed by CCRT significantly improved PFS (HR=0.68, 95% CI 0.56 – 0.81, P < 0.001) compared versus CCRT with or without AC, and no heterogeneity was observed (I2 = 0.0%, P = 0.975). NACT was associated with a significant improvement in overall survival (HR = 0.64, 95% CI 0.49 – 0.84, P = 0.001; I2 = 0.0%, P = 0.467) and distant failure-free survival (HR = 0.72, 95% CI 0.53 – 0.97, P = 0.031; I2 = 0.0%, P = 0.744). No significant benefit was shown by NACT for locoregional control. NACT with CCRT increased risks of grade 3 – 4 anemia, thrombocytopenia, leukopenia, and fatigue, compared versus CCRT with or without AC.ConclusionsOur meta-analysis confirmed that the addition of NACT to CCRT significantly improved PFS and OS versus CCRT with or without AC for locoregionally advanced nasopharyngeal carcinoma. These results may alter the standard of care - CCRT with or without AC, for locoregionally advanced nasopharyngeal carcinoma.
The X-ray repair cross-complementing group 3 (XRCC3) protein plays an important role in the repair of DNA double-strand breaks. The relationship between XRCC3 polymorphisms and the risk of radiation-induced adverse effects on normal tissue remains inconclusive. Thus, we performed a meta-analysis to elucidate the association between XRCC3 polymorphisms and radiation-induced adverse effects on normal tissue. All eligible studies up to December 2014 were identified through a search of the PubMed, Embase and Web of Science databases. Seventeen studies involving 656 cases and 2193 controls were ultimately included in this meta-analysis. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between XRCC3 polymorphisms and the risk of radiation-induced normal tissue adverse effects. We found that the XRCC3 p.Thr241Met (rs861539) polymorphism was significantly associated with early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31–3.01, P = 0.001). A positive association lacking statistical significance with late adverse effects was also identified (OR = 1.28, 95%CI: 0.97–1.68, P = 0.08). In addition, the rs861539 polymorphism was significantly correlated with a higher risk of adverse effects induced by head and neck area irradiation (OR = 2.41, 95%CI: 1.49–3.89, p = 0.0003) and breast irradiation (OR = 1.41, 95%CI: 1.02–1.95, p = 0.04), whereas the correlation was not significant for lung irradiation or pelvic irradiation. Furthermore, XRCC3 rs1799794 polymorphism may have a protective effect against late adverse effects induced by radiotherapy (OR = 0.47, 95%CI: 0.26–0.86, P = 0.01). Well-designed large-scale clinical studies are required to further validate our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.