Chicken ovalbumin (OVA) exists as mono-N-glycosylated form with a carbohydrate chain on Asn-292 in egg white, despite the possession of two potential N-glycosylation sites. To investigate the roles of N-glycosylation of OVA, we constructed a series of N-glycosylation mutants deleted N-glycosylation site and compared the secretion level of the mutants in Pichia pastoris. N292Q and N292/311Q mutants resulted in greater lowering of the secretion level as compared with wild-type, whereas N311Q mutant was secreted in approximately equal amounts to wild-type. However, secretion of wild-type and N311Q mutant was inhibited completely by tunicamycin treatment. All the N-glycosylation mutants have been expressed in the cells, as well as wild-type. Circular dichroism and fluorescence spectra of secreted N311Q mutant were almost identical to those of wild-type, while those of N292Q and N292/311Q mutants were different from wild-type; and, N292Q and N292/311Q mutants showed considerably lower denaturation temperature than wild-type. The results indicate that N-glycosylation at Asn-292 of OVA is required for the folding and secretion.
A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31–40 µm upper diameter, 11–20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.
Breast cancer cells of MDA-MB-231 express various types of membrane proteins in the cell membrane. In this study, two types of membrane proteins in MDA-MB-231 cells were observed using a plasmonic chip with an epifluorescence microscope. The targeted membrane proteins were epithelial cell adhesion molecules (EpCAMs) and epidermal growth factor receptor (EGFR), and Alexa®488-EGFR antibody and allophycocyanin (APC)-labeled EpCAM antibody were applied to the fluorescent detection. The plasmonic chip used in this study is composed of a two-dimensional hole-array structure, which is expected to enhance the fluorescence at different resonance wavelengths due to two kinds of grating pitches in a square side and a diagonal direction. As a result of multi-color imaging, the enhancement factor of Alexa®488-EGFR and APC-EpCAM was 13 ± 2 and 12 ± 2 times greater on the plasmonic chip, respectively. The excited wavelength or emission wavelength of each fluorescent agent is due to consistency with plasmon resonance wavelength in the hole-arrayed chip. The multi-color fluorescence images of breast cancer cells were improved by the hole-arrayed plasmonic chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.