Loss of sensory hair cells in the inner ear is a major cause of permanent hearing loss, since regeneration of hair cells rarely occurs in mammals. The aim of this study was to examine the potential of neural stem cell transplantation to restore inner ear hair cells in mice. Fetal neural stem cells were transplanted into the mouse inner ear after drug-induced injury. Histological analysis demonstrates that the majority of grafted cells differentiated into glial or neural cells in the inner ear. Strikingly, however, we show that grafted cells integrate in vestibular sensory epithelia and express specific markers for hair cells. This finding suggests that transplanted neural stem cells have the potential to differentiate and restore inner ear hair cells.
This study aimed to evaluate the potential of bone marrow stromal cells for treatment of inner ear diseases. Autologous marrow cells labeled with Dil were implanted into the inner ear of five gentamicin-treated chinchillas. Histological analysis 3 weeks later revealed robust survival of grafted marrow cells in multiple regions within the cochlea. Marrow cells implanted in the basal turn of the cochlea migrated as far as the apical end or into the spiral ligament of the cochlea. Some grafted cells expressed a neuronal or glial cell marker, indicating their ability to differentiate into neuronal or glial cells. Survival, migrational mobility and differentiation of autologous marrow cells in damaged cochlea suggest their potential as transplants for treatment of various degenerative inner ear diseases.
This study aimed to evaluate the potential of embryonic stem cell-derived neural progenitors for use as transplants for the replacement of the auditory primary neurons, spiral ganglion neurons. Mouse embryonic stem cell-derived neural progenitors were implanted into the base of the cochlear modiolus of normal or deafened guinea pigs, which contains spiral ganglion neurons and cochlear nerve fibers. Histological analysis demonstrated the survival and neural differentiation of transplants in the cochlear modiolus and active neurite outgrowth of transplants toward host peripheral or central auditory systems. Functional assessments indicated the potential of transplanted embryonic stem cell-derived neural progenitors to elicit the functional recovery of damaged cochleae. These findings support the hypothesis that transplantation of embryonic stem cell-derived neural progenitors can contribute to the functional restoration of spiral ganglion neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.