Wireless Sensor Network (WSN) as one of the representatives of the Internet of Things technology has also received much attention. To accurately diagnose fault sensor nodes, a fault diagnosis method based on fireworks algorithm optimization convolutional neural network algorithm is proposed. The weights and biases of the convolutional neural networks are optimized by using the self-regulating mechanism of global and local searching ability of fireworks algorithm. So the problem of convolution neural network in extreme judgment and limited convergence speed is solved, to effectively realize the fault diagnosis of the WSN. Simulation experiments show that this algorithm has higher fault diagnosis accuracy than other classic WSN fault diagnosis algorithms. INDEX TERMS convolution neural network, fault diagnosis, fireworks algorithm, MM* model, wireless sensor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.