Introduction Streptococcus agalactiae is an important zoonotic pathogen that affects milk production and quality and poses a threat to public health. Treatment of infections with this bacterium exploits antimicrobials, to which the resistance of S. agalactiae is a growing problem. Addressing the possibility of a correlation between this pathogen’s genetic factors for antimicrobial resistance and virulence, this study attempted to identify the relevant genes. Material and Methods Antimicrobial resistance of S. agalactiae isolated from 497 Chinese bovine mastitic milk samples was detected by the broth microdilution method. Eight drug resistance genes and eleven virulence genes were detected using PCR. Results Streptococcus agalactiae was 100% susceptible to rifampicin and vancomycin, 93.33% susceptible to sulfisoxazole and sulfamethoxazole, but 100% resistant to ≥3 of the 16 antimicrobial agents, thereby being multidrug resistant, with resistance to oxacillin, tetracycline, erythromycin, clindamycin, and gentamicin being common. The ermB, ermA and lnuA genes were carried by 73.33%, 66.67% and 60.00% of the strains, respectively. The carriage rates of the glnA, clyE, hylB, bibA, iagA, and fbsA virulence genes were greater than 40%, lmb and bac were not observed in any strain, and glnA+hylB+bibA+iagA+fbsA+clyE combined virulence gene patterns were the most commonly detected. Conclusion Antimicrobial resistance of S. agalactiae is still a great concern for cattle health in China, and multidrug resistance coupled with the high positive rates of this bacterium’s strains for virulence genes indicates the importance of S. agalactiae surveillance and susceptibility tests.
Introduction Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. Material and Methods A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. Results The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. Conclusion The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.