A new computing paradigm that has been growing in computing systems is fog computing. In the healthcare industry, Internet of Things (IoT) driven fog computing is being developed to speed up the services for the general public and save billions of lives. This new computing platform, based on the fog computing paradigm, may reduce latency when transmitting and communicating signals with faraway servers, allowing medical services to be delivered more quickly in both spatial and temporal dimensions. One of the necessary qualities of computing systems that can enable the completion of healthcare operations is latency reduction. Fog computing can provide reduced latency when compared to cloud computing due to the use of only low-end computers, mobile phones, and personal devices in fog computing. In this paper, a new framework for healthcare monitoring for managing real-time notification based on fog computing has been proposed. The proposed system monitors the patient’s body temperature, heart rate, and blood pressure values obtained from the sensors that are embedded into a wearable device and notifies the doctors or caregivers in real time if there occur any contradictions in the normal threshold value using the machine learning algorithms. The notification can also be set for the patients to alert them about the periodical medications or diet to be maintained by the patients. The cloud layer stores the big data into the cloud for future references for the hospitals and the researchers.
Sensors are the modules or electronic devices that are used to measure and get environmental events and send the captured data to other devices, usually computer processors allocated on the cloud. One of the most recent challenges is to protect and save the privacy issues of those sensors data on the cloud sharing. In this paper, sensors data collection framework is proposed using mobile identification and proxy re-encryption model for data sharing. The proposed framework includes: identity broker server, sensors managing and monitoring applications, messages queuing sever and data repository server. Finally, the experimental results show that the proposed proxy re-encryption model can work in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.