As a flexible grinding method with high efficiency, abrasive belt grinding has been widely used in the machining of mechanical parts. However, abrasive belt grinding has not been well applied in the field of ultra-precision optical processing, due to the lack of a stable and controllable removal function. In this paper, based on the idea of deterministic machining, the time-controlled grinding (TCG) method based on the abrasive belt as a machining tool was applied to the deterministic machining of optical components. Firstly, based on the Preston equation, a theoretical model of the TCG removal function was established. Secondly, removal function experiments were carried out to verify the validity and robustness of the theoretical removal model. Further, theoretical and actual shaping experiments were carried out on 200 mm × 200 mm flat glass-ceramic. The results show that the surface shape error converged from 6.497 μm PV and 1.318 μm RMS to 5.397 μm PV and 1.115 μm RMS. The theoretical and experimental results are consistent. In addition, the surface roughness improved from 271 to 143 nm Ra. The results validate the concept that the removal function model established in this paper can guide the actual shaping experiments of TCG, which is expected to be applied to the deterministic machining of large-diameter optical components.
Modern optical manufacturing techniques, such as stress disc polishing, bonnet polishing, magnetorheological finishing, and ion beam finishing, suffer from edge effects or low removal efficiency. To solve the above problems, this paper mainly studies dual-axis wheel polishing technology. According to the Preston equation combined with Hertz contact theory and kinematics, a theoretical removal function model of dual-axis wheel polishing is established. Then, the removal function shape and removal efficiency under different revolution-to-rotation speed ratios are simulated. From the simulation results, it can be concluded that the removal function of the dual-axis wheel polishing technology in this paper is Gauss type when the revolution-to-rotation speed ratio is 10:1 or less. With the increase of rotation ratio, the efficiency of the removal function is higher. This paper establishes a theoretical foundation for the design of the dual-axis wheel polishing device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.