Background Accurate and reliable predictions of infectious disease can be valuable to public health organizations that plan interventions to decrease or prevent disease transmission. A great variety of models have been developed for this task. However, for different data series, the performance of these models varies. Hepatitis E, as an acute liver disease, has been a major public health problem. Which model is more appropriate for predicting the incidence of hepatitis E? In this paper, three different methods are used and the performance of the three methods is compared. Methods Autoregressive integrated moving average(ARIMA), support vector machine(SVM) and long short-term memory(LSTM) recurrent neural network were adopted and compared. ARIMA was implemented by python with the help of statsmodels. SVM was accomplished by matlab with libSVM library. LSTM was designed by ourselves with Keras, a deep learning library. To tackle the problem of overfitting caused by limited training samples, we adopted dropout and regularization strategies in our LSTM model. Experimental data were obtained from the monthly incidence and cases number of hepatitis E from January 2005 to December 2017 in Shandong province, China. We selected data from July 2015 to December 2017 to validate the models, and the rest was taken as training set. Three metrics were applied to compare the performance of models, including root mean square error(RMSE), mean absolute percentage error(MAPE) and mean absolute error(MAE). Results By analyzing data, we took ARIMA (1, 1, 1), ARIMA (3, 1, 2) as monthly incidence prediction model and cases number prediction model, respectively. Cross-validation and grid search were used to optimize parameters of SVM. Penalty coefficient C and kernel function parameter g were set 8, 0.125 for incidence prediction, and 22, 0.01 for cases number prediction. LSTM has 4 nodes. Dropout and L2 regularization parameters were set 0.15, 0.001, respectively. By the metrics of RMSE, we obtained 0.022, 0.0204, 0.01 for incidence prediction, using ARIMA, SVM and LSTM. And we obtained 22.25, 20.0368, 11.75 for cases number prediction, using three models. For MAPE metrics, the results were 23.5%, 21.7%, 15.08%, and 23.6%, 21.44%, 13.6%, for incidence prediction and cases number prediction, respectively. For MAE metrics, the results were 0.018, 0.0167, 0.011 and 18.003, 16.5815, 9.984, for incidence prediction and cases number prediction, respectively. Conclusions Comparing ARIMA, SVM and LSTM, we found that nonlinear models(SVM, LSTM) outperform linear models(ARIMA). LSTM obtained the best performance in all three metrics of RSME, MAPE, MAE. Hence, LSTM is the most suitable for predicting hepatitis E monthly incidence and cases number.
Hyperspectral image (HSI) classification has been a hot topic in the remote sensing community. A large number of methods have been proposed for HSI classification. However, most of them are based on the extraction of spectral feature, which leads to information loss. Moreover, they rarely consider the correlation among the spectrums. In this paper, we see spectral information as a sequential data which should be relevant to each other. We introduce long short-term memory (LSTM) model, which is a typical recurrent neural network (RNN), to deal with HSI classification. To tackle the problem of overfitting caused by limited labeled samples, regularization strategy is introduced. For unbalance in different classes, we improve LSTM by weighted cost function. Also, we employ guided filter to smooth the HSI that can greatly improve the classification accuracy. And we proposed a method for modeling hyperspectral sequential data, which is very useful for future research work. Finally, the experimental results show that our proposed method can improve the classification performance as compared to other methods in three popular hyperspectral datasets.
Over the past years, a considerable amount of effort has been devoted, both in industry and academia, towards the development of innovative applications for the internet of things (IoT). An important challenge of IoT application is to adapt to dynamic environments, which can be modified at runtime considering the emergence of other requirements. To address this issue, pervasive computing can provide us with a good solution. Aiming at the environments which are open, dynamic and heterogeneous, we propose an adaptive middleware named PAmiddleware. PAmiddleware is service-oriented, context-aware, and supported by QoS. The architecture of PAmiddleware is based on TAO which is a standard-based, CORBA middleware framework. Meanwhile, we present a model for context awareness to allow the adaptation and give a modelling method of context description for context resource. We also propose an adaptive strategy which uses a genetic algorithm for optimisation. The proposed model can well meet the needs of pervasive computing, and provide more convenient service.
Based on the alternating group strategies, a new high accurate Alternating Group 8-point scheme
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.