Increasing evidence suggests that mood disorders are associated with a reduction in regional CNS volume and neuronal and glial cell atrophy or loss. Lithium, a mainstay in the treatment of mood disorders, has recently been demonstrated to robustly increase the levels of the cytoprotective B-cell lymphoma protein-2 (bcl-2) in areas of rodent brain and in cultured cells. In view of bcl-2's antiapoptotic and neurotrophic effects, the present study was undertaken to determine if lithium affects neurogenesis in the adult rodent hippocampus. Mice were chronically treated with lithium, and 5-bromo-2-deoxyuridine (BrdU) labeling of dividing cells was conducted over 12 days. Immunohistochemical analysis was undertaken 1 day after the last injection, and three-dimensional stereological cell counting revealed that lithium produced a significant 25% increase in the BrdUlabeled cells in the dentate gyrus. Double-labeling immunofluorescence studies were undertaken to co-localize BrdU-positive cells with neuron-specific nuclear protein and showed that ϳ65% of the cells were double-labeled. These results add to the growing body of evidence suggesting that mood stabilizers and antidepressants exert neurotrophic effects and may therefore be of use in the long-term treatment of other neuropsychiatric disorders.
Manic-depressive illness has been conceptualized as a neurochemical illness. However, brain imaging and postmortem studies reveal gray-matter reductions, as well as neuronal and glial atrophy and loss in discrete brain regions of manic-depressive patients. The roles of such cerebral morphological deficits in the neuropathophysiology and therapeutic mechanisms of manic-depressive illness are unknown. Valproate (2-propylpentanoate) is a commonly used mood stabilizer. The ERK (extracellular signal-regulated kinase) pathway is used by neurotrophic factors to regulate neurogenesis, neurite outgrowth, and neuronal survival. We found that chronic treatment of rats with valproate increased levels of activated phospho-ERK44/42 in neurons of the anterior cingulate, a region in which we found valproateinduced increases in expression of an ERK pathway-regulated gene, bcl-2. Valproate time and concentration dependently increased activated phospho-ERK44/42 and phospho-RSK1 (ribosomal S6 kinase 1) levels in cultured cortical cells. These increases were attenuated by Raf and MEK (mitogen-activated protein kinase/ERK kinase) inhibitors. Although valproate affects the functions of GSK-3 (glycogen synthase kinase-3) and histone deacetylase (HDAC), its effects on the ERK pathway were not fully mimicked by selective inhibitors of GSK-3 or HDAC. Similar to neurotrophic factors, valproate enhanced ERK pathway-dependent cortical neuronal growth. Valproate also promoted neural stem cell proliferation-maturation (neurogenesis), demonstrated by bromodeoxyuridine (BrdU) incorporation and double staining of BrdU with nestin, Tuj1, or the neuronal nuclei marker NeuN (neuronal-specific nuclear protein). Chronic treatment with valproate enhanced neurogenesis in the dentate gyrus of the hippocampus. Together, these data demonstrate that valproate activates the ERK pathway and induces ERK pathway-mediated neurotrophic actions. This cascade of events provides a potential mechanism whereby mood stabilizers alleviate cerebral morphometric deficits associated with manic-depressive illness.
In mammals, epigenetic marks on the X chromosomes are involved in dosage compensation. Specifically, they are required for X chromosome inactivation (XCI), the random transcriptional silencing of one of the two X chromosomes in female cells during late blastocyst development. During natural reproduction, both X chromosomes are active in the female zygote. In somatic-cell cloning, however, the cloned embryos receive one active (Xa) and one inactive (Xi) X chromosome from the donor cells. Patterns of XCIhave been reported normal in cloned mice, but have yet to be investigated in other species. We examined allele-specific expression of the X-linked monoamine oxidase type A (MAOA) gene and the expression of nine additional X-linked genes in nine cloned XX calves. We found aberrant expression patterns in nine of ten X-linked genes and hypomethylation of Xist in organs of deceased clones. Analysis of MAOA expression in bovine placentae from natural reproduction revealed imprinted XCI with preferential inactivation of the paternal X chromosome. In contrast, we found random XCI in placentae of the deceased clones but completely skewed XCI in that of live clones. Thus, incomplete nuclear reprogramming may generate abnormal epigenetic marks on the X chromosomes of cloned cattle, affecting both random and imprinted XCI.
We recently described a pronounced neuronal loss in layer III of the entorhinal cortex (EC) in patients with intractable temporal lobe epilepsy (Du et al., 1993a). To explore the pathophysiology underlying this distinct neuropathology, we examined the EC in three established rat models of epilepsy using Nissl staining and parvalbumin immunohistochemistry. Adult male rats were either electrically stimulated in the ventral hippocampus for 90 min or injected with kainic acid or lithium/pilocarpine. Animals were observed for behavioral changes for up to 6 hr and were killed 24 hr or 4 weeks after the experimental treatments. At 24 hr, all animals that had exhibited a bout of acute status epilepticus showed a consistent pattern of neuronal loss in the EC in Nissl-stained sections. Neurodegeneration was most pronounced in layer III of the medial Ec at all dorsoventral levels. A few surviving neurons were frequently present in the lesioned area. An identical pattern of nerve cell loss was also seen in the EC of rats killed 4 weeks following the treatments. This lesion was completely prevented by an injection of diazepam and pentobarbital, given 1 hr after kainic acid administration. Immunohistochemistry demonstrated a relative resistance of parvalbumin-positive neurons in layer III of the medial EC. Taken together, these experiments indicate that prolonged seizures cause a preferential neuronal loss in layer III of the medial EC and that this lesion may be related to a pathological elevation of intracellular calcium ion concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.