Hyperspectral image (HSI) contains a large number of spatial-spectral information, which will make the traditional classification methods face an enormous challenge to discriminate the types of land-cover. Feature learning is very effective to improve the classification performances. However, the current feature learning approaches are most based on a simple intrinsic structure. To represent the complex intrinsic spatial-spectral of HSI, a novel feature learning algorithm, termed spatial-spectral hypergraph discriminant analysis (SSHGDA), has been proposed on the basis of spatial-spectral information, discriminant information, and hypergraph learning. SSHGDA constructs a reconstruction between-class scatter matrix, a weighted within-class scatter matrix, an intraclass spatial-spectral hypergraph, and an interclass spatial-spectral hypergraph to represent the intrinsic properties of HSI. Then, in low-dimensional space, a feature learning model is designed to compact the intraclass information and separate the interclass information. With this model, an optimal projection matrix can be obtained to extract the spatial-spectral features of HSI. SSHGDA can effectively reveal the complex spatial-spectral structures of HSI and enhance the discriminating power of features for land-cover classification. Experimental results on the Indian Pines and PaviaU HSI data sets show that SSHGDA can achieve better classification accuracies in comparison with some state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.