With the widespread use of industrial Internet technology in intelligent production lines, the number of task requests generated by smart terminals is growing exponentially. Achieving rapid response to these massive tasks becomes crucial. In this paper we focus on the multi-objective task scheduling problem of intelligent production lines and propose a task scheduling strategy based on task priority. First, we set up a cloud-fog computing architecture for intelligent production lines and built the multi-objective function for task scheduling, which minimizes the service delay and energy consumption of the tasks. In addition, the improved hybrid monarch butterfly optimization and improved ant colony optimization algorithm (HMA) are used to search for the optimal task scheduling scheme. Finally, HMA is evaluated by rigorous simulation experiments, showing that HMA outperformed other algorithms in terms of task completion rate. When the number of nodes exceeds 10, the completion rate of all tasks is greater than 90%, which well meets the real-time requirements of the corresponding tasks in the intelligent production lines. In addition, the algorithm outperforms other algorithms in terms of maximum completion rate and power consumption.
In recent years, self-supervised monocular depth estimation has gained popularity among researchers because it uses only a single camera at a much lower cost than the direct use of laser sensors to acquire depth. Although monocular self-supervised methods can obtain dense depths, the estimation accuracy needs to be further improved for better applications in scenarios such as autonomous driving and robot perception. In this paper, we innovatively combine soft attention and hard attention with two new ideas to improve self-supervised monocular depth estimation: (1) a soft attention module and (2) a hard attention strategy. We integrate the soft attention module in the model architecture to enhance feature extraction in both spatial and channel dimensions, adding only a small number of parameters. Unlike traditional fusion approaches, we use the hard attention strategy to enhance the fusion of generated multi-scale depth predictions. Further experiments demonstrate that our method can achieve the best self-supervised performance both on the standard KITTI benchmark and the Make3D dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.