Although more currently utilized as analytical tool because of its high sensitivity and good reproducibility, the mechanism of the peroxyoxalate system, a chemiluminescence reaction with quantum yields only comparable to bioluminescence systems, has been extensively studied. The light emission mechanism can be divided in the pathway before chemiexcitation, which contains the rate-limiting steps, and the fast and kinetically non-observable chemiexcitation step. In this work, we obtain information on the mechanism of the slow pathways, attribute values to several rate constants prior to chemiexcitation and suggest a mechanistic scheme that could help optimization of conditions when the peroxyoxalate reaction is used as analytical tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.