Cells can form membraneless organelles by liquid–liquid phase separation. As these organelles are highly dynamic, it is crucial to understand the kinetics of these phase transitions. Here, we use droplet‐based microfluidics to mix reagents by chaotic advection and observe nucleation, growth, and coarsening in volumes comparable to cells (pL) and on timescales of seconds. We apply this platform to analyze the dynamics of synthetic organelles formed by the DEAD‐box ATPase Dhh1 and RNA, which are associated with the formation of processing bodies in yeast. We show that the timescale of phase separation decreases linearly as the volume of the compartment increases. Moreover, the synthetic organelles coarsen into one single droplet via gravity‐induced coalescence, which can be arrested by introducing a hydrogel matrix that mimics the cytoskeleton. This approach is an attractive platform to investigate the dynamics of compartmentalization in artificial cells.
Interactions between proteins and surfaces in combination with hydrodynamic flow and mechanical agitation can often trigger the conversion of soluble peptides and proteins into aggregates, including amyloid fibrils. Despite the extensive literature on the empirical effects of surfaces and mechanical forces on the formation of amyloids, the molecular details of the mechanisms underlying this behavior are still elusive. This limitation is, in part, due to the complex reaction network underlying the formation of amyloids, where several microscopic reactions of nucleation and growth can occur both at the interfaces and in bulk. In this work, we design a high-throughput assay based on nanoparticles and we apply a chemical kinetic platform to analyze the mechanisms underlying the effect of surfaces and mechanical forces on the formation of amyloid fibrils from human insulin under physiological conditions. By considering a variety of polymeric nanoparticles with different surface properties we explore a broad range of repulsive and attractive interactions between insulin and surfaces. Our analysis shows that hydrophobic interfaces induce the formation of amyloid fibrils by specifically promoting the primary heterogeneous nucleation rate. In contrast, mechanical forces accelerate the formation of amyloid fibrils by favoring mass transport and further amplify the number of fibrils by promoting fragmentation events. Thus, surfaces and agitation have a combined effect on the kinetics of protein aggregation observed at the macroscopic level but, individually, they each affect distinct microscopic reaction steps: the presence of interfaces generates primary nucleation events of fibril formation, which is then amplified by mechanical forces. These results suggest that the inhibition of surface-induced heterogeneous nucleation should be considered a primary target to suppress aggregation and explain why in many systems the simultaneous presence of surfaces and hydrodynamic flow enhances protein aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.