In a general, finite-dimensional securities market model with bidask spreads, we characterize absence of arbitrage opportunities both by linear programming and in terms of martingales. We first show that absence of arbitrage is equivalent to the existence of solutions to the linear programming problems that compute the minimum costs of super-replicating the feasible future cashflows. Via duality, we show that absence of arbitrage is also equivalent to the existence of underlying frictionless (UF) state-prices. We then show how to transform the UF state-prices into state-price densities, and use them to characterize absence of arbitrage opportunities in terms of existence of a securities market with zero bid-ask spreads whose price process lies inside the bid-ask spread. Finally, we argue that our results extend those of Naik (1995) and Jouini and Kallal (1995) to the case of intermediate dividend payments and positive bid-ask spreads on all assets.
This paper shows how to decompose weakly stationary time series into the sum, across time scales, of uncorrelated components associated with different degrees of persistence. In particular, we provide an Extended Wold Decomposition based on an isometric scaling operator that makes averages of process innovations. Thanks to the uncorrelatedness of components, our representation of a time series naturally induces a persistence-based variance decomposition of any weakly stationary process. We provide two applications to show how the tools developed in this paper can shed new light on the determinants of the variability of economic and financial time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.