A biallelic pentanucleotide expansion in the RFC1 gene has been reported to be a common cause of late-onset ataxia. In the general population, four different repeat conformations are observed: wild type sequence AAAAG (11 repeats) and longer expansions of either AAAAG, AAAGG or AAGGG sequences. However only the biallelic AAGGG expansions were reported to cause late-onset ataxia. In this study, we aimed to assess the prevalence and nature of RFC1 repeat expansions in three cohorts of adult-onset ataxia cases: Brazilian (n = 23) and Canadian (n = 26) cases that are negative for the presence of variants in other known ataxia-associated genes, as well as a cohort of randomly selected Canadian cases (n = 128) without regard to a genetic diagnosis. We identified the biallelic AAGGG expansion in only one Brazilian family which presented two affected siblings, and in one Canadian case. We also observed two new repeat conformations, AAGAG and AGAGG, which suggests the pentanucleotide expansion sequence has a dynamic nature. To assess the frequency of these new repeat conformations in the general population, we screened 163 healthy individuals and observed the AAGAG expansion to be more frequent in cases than in control individuals. While additional studies will be necessary to asses the pathogenic impact of biallelic genotypes that include the novel expanded conformations, their occurrence should nonetheless be examined in future studies.
Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental psychiatric disorder. Genome-wide association studies (GWAS) have identified several loci associated with ADHD. However, understanding the biological relevance of these genetic loci has proven to be difficult. Here, we conduct an ADHD transcriptome-wide association study (TWAS) consisting of 19,099 cases and 34,194 controls and identify 9 transcriptome-wide significant hits, of which 6 genes were not implicated in the original GWAS. We demonstrate that two of the previous GWAS hits can be largely explained by expression regulation. Probabilistic causal fine-mapping of TWAS signals prioritizes KAT2B with a posterior probability of 0.467 in the dorsolateral prefrontal cortex and TMEM161B with a posterior probability of 0.838 in the amygdala. Furthermore, pathway enrichment identifies dopaminergic and norepinephrine pathways, which are highly relevant for ADHD. Overall, our findings highlight the power of TWAS to identify and prioritize putatively causal genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.