To elucidate the effects of enamel matrix derivative (EMD: Emdogain) on bone regeneration in rat femurs after drill-hole injury, defects in bone were filled with either EMD or its carrier, PGA, as control. On postoperative days 4 to 28, dissected femurs were examined by means of various morphological approaches. In both experimental groups, formation of trabecular bone, which was immunostained for bone sialoproteins (BSP), had occurred in the medullary cavities at cylindrical bone defects on Day 7 postoperatively. Cuboidal osteoblasts were clearly observed on these newly-formed BSP-positive bone trabeculae. On Days 7 and 14, many multinucleated giant cells, which strongly expressed cathepsin K, had appeared on these bone trabeculae, indicating active bone remodeling. In these bone trabeculae, Ca and P weight % and Ca/P ratio were similar to those of cortical bone, and there was no significant difference between the PGA-and EMD-applied groups. Bone volume fraction of newly-formed bone trabeculae on Day 7 postoperatively was significantly higher in the EMD-applied group than in the PGA-applied controls. Because of active bone remodeling and the marked decrease of bone volume, on Days 14 and 28 postoperatively, however, there was no longer a significant difference in trabecular bone volume fraction between the experimental groups. Our results suggest that EMD possesses an osteo-promotive effect on bone and medullary regeneration during wound healing of injured long bones. Anat Rec 264: 438 -446, 2001.
Enamel matrix derivative (EMD: Emdogain) has been reported to stimulate the biosynthesis and regeneration of trabecular bone. To address whether the biological action of EMD is dependent on the local environment of osseous tissue, circular perforations were made in parietal bones and immediately filled with either EMD or its carrier, propylene glycol alginate (PGA), as control. On post-operative days 4-60, the dissected bones were examined by various histological techniques. New bone matrix, which was immunoreactive for bone sialoprotein (BSP), was formed from the periosteum at the peripheral area of perforations. Different from the findings reported in injured long bones, mineralized tissue was produced in the regenerating connective tissue within bone defects. This mineralized tissue was hardly immunostained for BSP, contained few collagen fibres, and lacked osteocytic lacunae and layers of osteoblasts and osteoid. Energy-dispersive X-ray analysis showed that Ca and P weight % and Ca/P molar ratio of this mineralized tissue were similar to or slightly higher than those in the pre-existing parietal bones. In addition, most multinucleated cells located in mineralized tissue lacked a ruffled border structure and showed weak immunoreaction for the lysosomal cysteine proteinase, cathepsin K, whereas those located in the bone matrix exhibited ruffled borders and strong cathepsin K expression. However, multinucleated cells located in both tissues were strongly stained for tartrate-resistant acid phosphatase. The volume fraction of such mineralized tissue appeared to be higher in EMD-applied bones than in PGA-applied controls. The mineralized tissue-forming stromal cells within bone defects appeared to show greater accumulation in EMD-applied bones than in PGA-applied controls. Our results suggest that the bioactive effects of EMD on bone wound healing and mineralized tissue formation depend, at least in part, on the local osseous environment where EMD has been applied.
Osteoprotegerin (OPG) is an osteoblast-derived secreted member of the tumour necrosis factor receptor superfamily that inhibits osteoclastogenesis. Mice that are OPG-deficient have severe bone loss, including growth plate cartilage destruction. Using OPG-deficient mice as a useful animal model, we attempted to clarify differentiation and ultrastructural features of osteoclasts located on destructed growth plate cartilage and trabecular bone matrix. In the humerus and femur of OPG homozygous (-/-) mice, adjacent to the growth plate cartilage, bone trabeculae without a calcified cartilage core were characteristically formed at the metaphyseal side of the medullary cavity, which resulted in an irregular chondrocyte distribution and arrangement in growth plate cartilage. During growth plate cartilage destruction, osteoclasts positive for tartrate-resistant acid phosphatase showed unusual localization on both type-II collagen-positive cartilage and type-I collagen-positive trabecular bone matrix at the ossification centre of the epiphyseal/metaphyseal border. Although multinucleated osteoclasts were distributed within open lacunar canals in the growth plate, those on uncalcified cartilage matrix lacked a ruffled border. Facing the calcified cartilage matrix within lacunar canals, osteoclasts showed irregularly formed ruffled borders. After growth plate destruction, a thin bone layer was deposited on the remaining cartilage surfaces by invading osteoblasts. Osteoclasts formed prominent ruffled border structures on bone matrix, deposited on the remaining growth plate cartilage. These results suggest that, in OPG (-/-) mice, terminal osteoclast differentiation requires the presence of newly produced bone matrix, as the coupled phenomenon of bone formation and resorption, as well as osteoblast-derived cytokines.
Osteoprotegerin (OPG) is a novel osteoblast-derived secreted member of the tumour necrosis factor receptor superfamily that inhibits osteoclastogenesis. We examined the effects of OPG administration on the distribution, ultrastructure and vacuolar-type H+-ATPase expression of osteoclasts and resulting trabecular bone loss in the femurs of ovariectomized (OVX) mice. Two-month-old female ddY mice were allocated to the following groups: (1) pretreatment base-line controls; (2) untreated sham-operated controls; (3) untreated OVX; and (4) OPG-administered OVX mice. Postoperatively, OPG (0.3 mg kg(-1) day(-1)) was intraperitoneally administered daily to OVX mice for 7 days. On postoperative day 7, all mice were sacrificed, and the dissected femurs were examined by means of light and immunoelectron microscopy and quantitative backscattered-electron image analysis. Backscattered-electron examination revealed that trabecular bone area/unit medullary area in untreated OVX mice was significantly lower than that of base-line control and sham-operated control mice. Compared with untreated OVX mice, OPG administration to OVX mice significantly increased trabecular bone area, which was similar to that of sham-operated control mice. Surprisingly, the number of TRAP-positive osteoclasts along the trabecular bone surfaces in OPG-administered OVX mice was not significantly decreased compared with that of sham-operated control and untreated OVX mice. Ultrastructurally, OPG administration caused disappearance of ruffled borders in most osteoclasts, but induced neither necrotic nor apoptotic changes. In addition, the expression of vacuolar-type H+-ATPase in osteoclasts was decreased by OPG administration. Our results suggest that low-dose OPG administration significantly reduces trabecular bone loss in OVX mice via impairment of the structure and bone resorbing activity of osteoclasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.