In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.
Acute encephalopathy (AE) is mainly reported in East Asia and, in most cases, results from pediatric viral infections, leading to fever, seizure, and loss of consciousness. Cerebral edema is the most important pathological symptom of AE. At present, AE is classified into four categories based on clinical and pathophysiological features, and cytokine storm-induced AE is the severest among them. The pathogenesis of AE is currently unclear; this can be attributed to the lack of a simple and convenient animal model for research. Here, we hypothesized that the induction of systemic inflammation using lipopolysaccharide (LPS) injection followed by hyperthermia (HT) treatment can be used to develop an animal model of cytokine storm-induced AE. Postnatal eight-day-old mouse pups were intraperitoneally injected with low-dose LPS (50 or 100 mg/kg) followed by HT treatment (41.5 C, 30 min). Histological analysis of their brains was subsequently performed.Fluorescein isothiocyanate assay combined with immunohistochemistry was used to elucidate blood-brain barrier (BBB) disruption. LPS (100 mg/kg) injection followed by HT treatment increased BBB permeability in the cerebral cortex and induced microglial activation. Astrocytic clasmatodendrosis was also evident. The brains of some pups exhibited small ischemic lesions, particularly in the cerebral cortex. Our results indicate that a low-dose LPS injection followed by HT treatment can produce symptoms of cytokine storm-induced AE, which is observed in diseases, such as acute necrotizing encephalopathy and hemorrhagic shock and encephalopathy syndrome. Thus, this mouse model can help to elucidate the pathogenetic mechanisms underlying AE.
c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.