Degeneration of the cardiac sympathetic nerve occurs in both Parkinson's disease (PD) and dementia with Lewy bodies and begins early in the disease progression of PD, accounting for reduced cardiac uptake of meta-iodobenzylguanidine even in the early stages of Lewy body disease (LBD). We previously demonstrated that degeneration of the distal axons of the cardiac sympathetic nerve precedes loss of their mother neurons in the paravertebral sympathetic ganglia, suggesting distal dominant degeneration of the cardiac sympathetic nerve in PD. Because alpha-synuclein is one of the key molecules in the pathogenesis of this disease, we further investigated how alpha-synuclein aggregates are involved in this distal-dominant degeneration. Both cardiac tissues and paravertebral sympathetic ganglia were obtained for comparison from 20 patients with incidental Lewy body disease (ILBD), 10 with PD, 20 with multiple system atrophy (MSA) and 10 control subjects. Immunohistochemical analysis was performed using antibodies against tyrosine hydroxylase (TH) as a marker for sympathetic nerves, phosphorylated neurofilament as a marker for axons and phosphorylated alpha-synuclein for pathological deposits. We found that (i) alpha-synuclein aggregates in the epicardial nerve fascicles, namely the distal axons of the cardiac sympathetic nerve, were much more abundant in ILBD with preserved TH-ir axons than in this disease with decreased TH-ir axons and PD; (ii) alpha-synuclein aggregates in the epicardial nerve fascicles were closely related to the disappearance of TH-ir axons; (iii) in ILBD with preserved TH-ir axons, alpha-synuclein aggregates were consistently more abundant in the epicardial nerve fascicles than in the paravertebral sympathetic ganglia; (iv) this distal-dominant accumulation of alpha-synuclein aggregates was reversed in ILBD with decreased TH-ir axons and PD, which both showed fewer of these axons but more abundant alpha-synuclein aggregates in the paravertebral sympathetic ganglia and (v) MSA was completely different from ILBD and PD based on the preservation of TH-ir axons and the scarcity of alpha-synuclein aggregates in either the cardiac tissues or the paravertebral sympathetic ganglia. These findings indicate that accumulation of alpha-synuclein aggregates in the distal axons of the cardiac sympathetic nervous system precedes that of neuronal somata or neurites in the paravertebral sympathetic ganglia and that heralds centripetal degeneration of the cardiac sympathetic nerve in PD, which sharply contrasts with slight changes in MSA. This chronological and dynamic relationship between alpha-synuclein aggregates and distal-dominant degeneration of the cardiac sympathetic nervous system may represent the pathological mechanism underlying a common degenerative process in PD.
The histopathological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin-proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.
The histological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates called Lewy bodies (LBs). LB formation has been considered to be a marker for neuronal degeneration, because neuronal loss is found in the predilection sites for LBs. To date, more than 70 molecules have been identified in LBs, in which alpha-synuclein is a major constituent of LB fibrils. Alpha-synuclein immunohistochemistry reveals that diffuse cytoplasmic staining develops into pale bodies via compaction, and that LBs arise from the peripheral portion of pale bodies. This alpha-synuclein abnormality is found in 10% of pigmented neurons in the substantia nigra and more than 50% of those in the locus ceruleus in PD. Recent studies have suggested that oligomers and protofibrils of alpha-synuclein are cytotoxic, and that LBs may represent a cytoprotective mechanism in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.