The vascular architecture of the human cerebral deep white matter was studied using soft X-ray and diaphanized specimens, achieved by intra-arterial injection of barium and vascular stain respectively, and also by electron microscopic examination of the corrosion cast of arteries in normal adult brains. The deep white matter arteries passed through the cerebral cortex with a few branches to the cortex and ran straight through the white matter. The arteries concentrated ventriculopetally to the white matter around the lateral ventricle. Anastomoses were noted around the ventricular wall at the terminals of the deep white matter arteries. No centrifugal branches irrigating the periventricular white matter from the lenticulo-striate arteries were observed in the present study. The presence of anastomoses among the terminal branches of deep white matter arteries protects against ischemic change or infarction in this area from an occlusion of a single deep white matter artery. This may lead to development of terminal zone infarction from ischemia or vascular diseases, affecting multiple deep white matter arteries. The subcortical and deep white matter arteries had thick adventitial sheaths and large adventitial spaces in the white matter but not in the cortex. The presence or absence of the adventitial space is regarded as another characteristic difference between the arteries in the white matter and cortex. This difference may influence pathological changes in vascular lesions in these respective areas.
c Toxoplasma gondii is an obligate intracellular parasite that invades a wide range of vertebrate host cells. Chronic infections with T. gondii become established in the tissues of the central nervous system, where the parasites may directly or indirectly modulate neuronal function. However, the mechanisms underlying parasite-induced neuronal disorder in the brain remain unclear. This study evaluated host gene expression in mouse brain following infection with T. gondii. BALB/c mice were infected with the PLK strain, and after 32 days of infection, histopathological lesions in the frontal lobe were found to be more severe than in other areas of the brain. Total RNA extracted from infected and uninfected mouse brain samples was subjected to transcriptome analysis using RNA sequencing (RNA-seq). In the T. gondii-infected mice, 935 mouse brain genes were upregulated, whereas 12 genes were downregulated. GOstat analysis predicted that the upregulated genes were primarily involved in host immune responses and cell activation. Positive correlations were found between the numbers of parasites in the infected mouse brains and the expression levels of genes involved in host immune responses. In contrast, genes that had a negative correlation with parasite numbers were predicted to be involved in neurological functions, such as small-GTPase-mediated signal transduction and vesicle-mediated transport. Furthermore, differential gene expression was observed between mice exhibiting the clinical signs of toxoplasmosis and those that did not. Our findings may provide insights into the mechanisms underlying neurological changes during T. gondii infection.T oxoplasma gondii, an obligate intracellular parasite, invades a wide variety of cells in its vertebrate hosts. The disease caused by T. gondii is usually asymptomatic but can be severe in immunosuppressed individuals, and cyst reactivation causes toxoplasmic encephalitis in AIDS patients (1). In addition, infection of nonimmune women during pregnancy can lead to congenital infection, with hydrocephaly, microcephaly, or intracerebral calcifications occurring in the fetus (2).Systemic infection by the proliferating stage of the parasite, the tachyzoite, is efficiently controlled by the cellular immune response. However, the pathogen persists in its slowly replicating stage, the bradyzoite, in tissue cysts mainly within the muscle and brain. In chronic infections, parasites within neurons can directly cause neuronal death and atrophy of neuronal processes, while inflammation via production of nitric oxide (NO) and inflammatory cytokines from microglia or immune cells may contribute to the death of neighboring neurons (3). However, the mechanisms underlying parasite-induced neuronal disorder in the brain remain unclear.In mice and rats, the specificity of behavioral modifications induced by T. gondii has been examined across a broad range of behaviors that primarily concern anxiety and learned fear in these animals (4). Recently, it has been suggested that chronic infection with T...
cChronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection.T oxoplasma gondii is one of the most successful brain parasites, infecting approximately one-third of the human population (1). T. gondii can persist in brain and muscle throughout the host's life, and chronic infection is asymptomatic in immunocompetent humans (2). However, recent studies have suggested that T. gondii infection is a risk factor for developing mental diseases, such as schizophrenia and depression, as well as human behavior and personality changes and suicide (3, 4). Interestingly, T. gondii infection increases the risk of schizophrenia roughly 2.7 times, which is higher than that for genes associated with schizophrenia (5). Several studies have also suggested that rodents infected with T. gondii exhibit decreased avoidance behavior in response to cat odors, indicating manipulation of the host's behavior by T. gondii to facilitate the parasite's transmission and complete sexual replication in the definitive host (6-11).To date, research on the mechanism(s) underlying behavioral changes following T. gondii infection has been conducted primarily from two points of view. First, the relationship between parasite localization in the brain and behavioral changes has been investigated, with a previous study reporting that T. gondii has no obvious tropism in the brain (12-15). However, another study found that tissue cyst density in amygdalar areas (the medial and basolateral amygdala) is 2-fold higher than that in nonamygdalar areas (9), whereas the presence of tissue cy...
The role of invariant natural killer T (iNKT) cells in antitumor immunity has been studied extensively, and clinical trials in patients with advanced cancer have revealed a prolonged survival in some cases. In recent years, humanized blocking antibodies against co-stimulatory molecules such as PD-1 have been developed. The enhancement of T cell function is reported to improve antitumor immunity, leading to positive clinical effects. However, there are limited data on the role of PD-1/programmed death ligand (PDL) molecules in human iNKT cells. In this study, we investigated the interaction between PD-1 on iNKT cells and PDL on antigen-presenting cells (APCs) in the context of iNKT cell stimulation. The blockade of PDL1 at the time of stimulation resulted in increased release of helper T cell (Th) 1 cytokines from iNKT cells, leading to the activation of NK cells. The direct antitumor function of iNKT cells was also enhanced after stimulation with anti-PDL1 antibody-treated APCs. According to these results, we conclude that the co-administration of anti-PDL1 antibody and alpha-galactosylceramide (αGalCer)-pulsed APCs enhances iNKT cell-mediated antitumor immunity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00262-016-1901-y) contains supplementary material, which is available to authorized users.
Allergen-reactive ST2 CD45RO CD4 cells or those combined with IL-5 IL-13 CD27 CD161 CD4 cells may be useful as markers indicating the successful treatment of SLIT. These cells may play a crucial role in the pathogenesis of AR as pathogenic memory Th2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.