A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three-and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.
A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.
Using a 141 F 2 population generated from maize inbred B64 £ teosinte Zea nicaraguensis cross, quantitative trait loci (QTLs) controlling aerenchyma formation in roots under non-Xooding drained soil conditions were identiWed. Seedlings of Z. nicaraguensis formed clear aerenchyma in the cortex of adventitious roots in non-Xooding conditions, whereas the maize inbred line B64 did not. In the F 2 population, the capacity to develop aerenchyma exhibited wide and continuous variation, suggesting the trait was controlled by multiple genes. A linkage map was developed using 85 SSR markers, covering 1,224 cM across all ten chromosomes. Composite interval mapping analysis revealed that four QTLs for aerenchyma formation under non-Xooding conditions were located to two regions of chromosome 1 (identiWed as Qaer1.02-3 and Qaer1.07), chromosome 5 (Qaer5.09) and chromosome 8 (Qaer8.06-7), and these explained 46.5% of the total phenotypic variance. The multiple interval mapping approach identiWed additional QTLs on chromosomes 1 (Qaer1.01) and 5 (Qaer5.01). Using these results, it may be possible to use SSR markers linked to aerenchyma formation in a marker assisted selection approach to introduce aerenchyma formation in drained soil conditions into maize for the eventual development of Xooding tolerant maize hybrids.
Quantitative trait loci (QTLs) controlling adventitious root formation (ARF) on the soil surface were evaluated under flooding conditions in 110 individuals of an F 2 population derived from a cross between a dent inbred line 'B64' and a tropical Caribbean flint inbred line 'Na4'. The ARF capacity of seedlings suggested the existence of continuous variation in the F 2 population. The QTLs for ARF were located on chromosomes 3 (bin 3.07-8), 7 (bin 7.04-5) and 8 (bin 8.05). Alleles of line Na4, with a high capacity for ARF, increased ARF in the case of all the QTLs. By comparing chromosome positions of ARF loci in the B64 × Na4 population with those in a B64 × teosinte (Zea mays ssp. huehuetenangensis) population, the region conditioning ARF on chromosome 8 was consistent across the two populations. In the present study, overlap between the QTLs for ARF in the B64 × Na4 cross and QTLs for root traits measured in aerated hydroponic culture was also observed as reported in other mapping populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.