Octacalcium phosphate and collagen composite (OCP/Col) achieves stable bone regeneration without cell transplantation in preclinical studies. Recently, a sponsor‐initiated clinical trial was conducted to commercialize the material. The present study investigated bone regeneration by OCP/Col with the single local administration of teriparatide (parathyroid hormone 1‐34; TPTD). OCP/Col was prepared by mixing sieved granules of OCP and atelocollagen for medical use and a disk was molded. After the creation of a rodent critical‐sized calvarial defect, OCP/Col or OCP/Col with dripped TPTD solution (1.0 or 0.1 µg; OCP/Col/TPTDd1.0 or OCP/Col/TPTDd0.1) was implanted into the defect. Six defects in each group were fixed 12 weeks after implantation. Radiographic examinations indicated that radiopaque figures in defects treated with OCP/Col with TPTD (OCP/Col/TPTDd) occupied a wider range than those treated with OCP/Col. Histological results demonstrated that most of the defect in OCP/Col/TPTDd was filled with newly formed bone. A histomorphometrical examination indicated that the percentage of newly formed bone was significantly higher in the defects of OCP/Col/TPTDd 1.0 (53.6 ± 4.3%) and OCP/Col/TPTDd 0.1 (52.2 ± 7.4%) than in those of OCP/Col (40.1 ± 8.4%), whereas no significant differences were observed between OCP/Col/TPTDd1.0 and OCP/Col/TPTDd0.1. These results suggest that OCP/Col with the single local administration of TPTD enhances bone regeneration in a rodent calvarial critical‐sized bone defect. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1851–1857, 2018.
The overall objective of this study was to assess the safety and efficacy of OCP/Col as a bone substitute material for bone regeneration during sinus floor augmentation. Maxillary sinus floor augmentation was performed thorough lateral window approach. According to the height of host bone, simultaneous approach (≥5 mm) or staged approach (less than 5 mm) was applied. In this research, clinical findings of dental implant treatment after setting the restorations were set as a primary endpoint in both approaches (infection, inflammation around the implant, movement of the implant, pain, sensory disorder, and bone resorption around the implant body on radiological evaluation.). In staged approach, histological evaluation of bone biopsy specimen was also conducted. As secondary endpoints, hounsfield unit (HU) value, vertical bone height, implant stability quotient (ISQ), and adverse events during the research were evaluated. In all cases, as a primary endpoint, clinical findings after setting the restorations were uneventful with no adverse events. Histological structure demonstrated mature bone derived from OCP/Col. In the ossified area, osteogenesis was observed around OCP granules, and osteoblast‐like cells were arrayed around OCP granules. Osteocyte encapsulation was recognized in the new bone. HU increased over time with both approaches. Vertical bone height significantly increased at 3 months postoperatively, and maintained during follow‐up. ISQ increased with both approaches. In particular, ISQ was significantly increased with the staged approach. This clinical trial demonstrated the safety and efficacy of OCP/Col for bone regeneration in maxillary sinus floor augmentation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:243–252, 2020.
Background: Previous studies showed that octacalcium (OCP) collagen composite (OCP/Col) can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. Methods: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material) served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. Results: In histomorphometric analyses, the peri-implant bone areas (BA%) and bone-implant contact (BIC%) were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. Conclusion: These results suggested that OCP/Col could be used for implant treatment as a bone substitute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.