The reduction of the emeraldine form of polyaniline film into leucoemeraldine, which corresponds to the conversion of an electric conductor into an insulator, shifted in the positive direction with increasing scan rate and film thickness. Similar dependence was found in the diffusion-controlled voltammograms of dispersed polyaniline latex particles with eight diameters ranging from 0.2 to 7.5 µm. The particles were synthesized by coating dispersed polystyrene latex with polyaniline. These variations were explained in terms of electric percolation of the conducting species to the electrode. The theoretical expression for the Nernst equation was derived on the assumption that the percolated and the un-percolated conducting species took inner potentials of the electrode and the solution phase, respectively. The conducting species does not participate in the determination of the equilibrium potential, though it participates in the Faradaic current. The cathodic peak potential shifted in the negative direction with an increase in particle size, solution viscosity, and film thickness, as predicted from the derived Nernst equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.