In the tumor cells exposed to hypoxia, hypoxia-inducible factor-1 (HIF-1)-mediated adaptation responses such as angiogenesis and anaerobic metabolism are induced for their survival. We have recently reported that the constitutive expression of HIF-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and glucose deprivation. We then established dominant-negative HIF-1 alpha (dnHIF-1 alpha) transfectants and examined their susceptibility to apoptosis and growth inhibition induced by hypoxia and glucose deprivation in vitro and their tumorigenicity in SCID mice. We further examined the expressions of aldolase A and Glut-1 in vitro and Glut-1 expression and glucose uptake in the tumor tissues and microvessel counts in the tumor tissues. As a result, dnHIF-1 alpha rendered the pancreatic cancer cells sensitive to apoptosis and growth inhibition induced by hypoxia and glucose deprivation. Also it abrogated the enhanced expression of Glut-1 and aldolase A mRNAs under hypoxia and reduced the expression of Glut-1 and the glucose uptake in the tumor tissues and consequently in vivo tumorigenicity. We found no significant difference in the microvessel counts among the tumor tissues. From these results, we suggest that the disruption of the HIF-1 pathway might be effective in the treatment of pancreatic cancers.
Background:Tumour stromal cells differ from its normal counterpart. We have shown that tumour endothelial cells (TECs) isolated from tumour tissues are also abnormal. Furthermore, we found that mRNAs of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) were upregulated in TECs. Vascular endothelial growth factor-A and COX-2 are angiogenic factors and their mRNAs contain an AU-rich element (ARE). AU-rich element-containing mRNAs are reportedly stabilised by Hu antigen R (HuR), which is exported to the cytoplasm.Methods:Normal endothelial cell (NEC) and two types of TECs were isolated. We evaluated the correlation of HuR and accumulation of VEGF-A and COX-2 mRNAs in TECs and effects of HuR on biological phenotypes of TECs.Results:The HuR protein was accumulated in the cytoplasm of TECs, but not in NECs. Vascular endothelial growth factor-A and COX-2 mRNA levels decreased due to HuR knockdown and it was shown that these ARE-mRNA were bound to HuR in TECs. Furthermore, HuR knockdown inhibited cell survival, random motility, tube formation, and Akt phosphorylation in TECs.Conclusion:Hu antigen R is associated with the upregulation of VEGF-A and COX-2 mRNA in TECs, and has an important role in keeping an angiogenic switch on, through activating angiogenic phenotype in tumour endothelium.
Since it is reported that adrenomedullin (AM) upregulated by hypoxia inhibits hypoxic cell death, we examined the effects of AM antagonist (AM C-terminal fragment; AM(22-52)) on the growth of pancreatic cancer cells. We, for the first time, demonstrated that AM antagonist significantly reduced the in vivo growth of the pancreatic cancer cell line. Immunohistochemical analysis demonstrated that the mean diameter of blood vessels was significantly smaller in the tumor tissues treated with AM antagonist than in those treated with AM N-terminal fragment (AM(1-25)), and that the PCNA-labeling index was lower in the former than in the latter. Then we demonstrated that AM antagonist showed no effect on the in vitro growth of the pancreatic cancer cell line. These results showed that AM played an important role in the growth of pancreatic cancer cells in vivo, suggesting that AM antagonist might be a useful tool for treating pancreatic cancers.
Summary. To elucidate the mechanisms by which haemopoietic progenitor cells lodge in the bone marrow, we examined the secretion of chemoattractants for haemopoietic progenitor cells by bone marrow and lung endothelial cells. The bone marrow endothelial cells, but not lung endothelial cells, secreted chemoattractants for the haemopoietic progenitor cell line, FDCP-2, and normal haemopoietic progenitor cells. Checkerboard analysis demonstrated that the conditioned medium of the bone marrow endothelial cells had chemotactic activity and random motilitystimulating activity. The bone marrow endothelial cells expressed stromal-cell-derived factor-1 (SDF-1) mRNA and produced SDF-1 protein, whereas the lung endothelial cells did not. Adhesion of FDCP-2 cells to the bone marrow endothelial cells was partially inhibited by anti-SDF-1 antibody. These ®ndings suggest that the chemoattractants for haemopoietic progenitor cells including SDF-1 and random motility-stimulating factor(s) selectively secreted by the bone marrow endothelial cells may contribute to the homing of haemopoietic progenitor cells to bone marrow.
EIAF is a newly isolated ETS-family gene that is located on 17q21 and codes for the adenovirus EIA enhancer-binding protein. In our chromosome analysis of 18 of the Ewing family of tumors and undifferentiated sarcomas, we found t(17;22)(q12;q12) in an MIC2 antigen-positive undifferentiated sarcoma of infancy. On Southern blot analysis, EWS and EIAF cDNA probes hybridized to the same rearranged band, indicating that an EWS-EIAF fusion gene was formed in the tumor. Further Southern blot analysis using four EIAF cDNA probes of different sizes showed that the breakpoint lies in the region upstream to the ETS domain of the EIAF gene. EIAF may be the fourth ETS-family gene to be identified forming a fusion gene with EWS. We assume that the RNA binding domain of EWS may have been replaced by the DNA binding domain of EIAF in the EWS-EIAF fusion protein as in other fusion proteins previously characterized in Ewing sarcoma and other types of sarcomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.