Highlights d We build the genomic and transcriptomic landscape of 465 primary TNBCs d Chinese TNBC cases demonstrate more PIK3CA mutations and LAR subtype d Transcriptomic data classify TNBCs into four subtypes d Multi-omics profiling identifies potential targets within specific TNBC subtypes
Purpose: The tumor microenvironment has a profound impact on prognosis and immunotherapy. However, the landscape of the triple-negative breast cancer (TNBC) microenvironment has not been fully understood. Experimental Design: Using the largest original multiomics dataset of TNBC (n ¼ 386), we conducted an extensive immunogenomic analysis to explore the heterogeneity and prognostic significance of the TNBC microenvironment. We further analyzed the potential immune escape mechanisms of TNBC. Results: The TNBC microenvironment phenotypes were classified into three heterogeneous clusters: cluster 1, the "immune-desert" cluster, with low microenvironment cell infiltration; cluster 2, the "innate immune-inactivated" cluster, with resting innate immune cells and nonimmune stromal cells infiltration; and cluster 3, the "immuneinflamed" cluster, with abundant adaptive and innate immune cells infiltration. The clustering result was validated internally with pathologic sections and externally with The Cancer Genome Atlas and METABRIC cohorts. The microenvironment clusters had significant prognostic efficacy. In terms of potential immune escape mechanisms, cluster 1 was characterized by an incapability to attract immune cells, and MYC amplification was correlated with low immune infiltration. In cluster 2, chemotaxis but inactivation of innate immunity and low tumor antigen burden might contribute to immune escape, and mutations in the PI3K-AKT pathway might be correlated with this effect. Cluster 3 featured high expression of immune checkpoint molecules. Conclusions: Our study represents a step toward personalized immunotherapy for patients with TNBC. Immune checkpoint inhibitors might be effective for "immuneinflamed" cluster, and the transformation of "cold tumors" into "hot tumors" should be considered for "immune-desert" and "innate immune-inactivated" clusters.
MicroRNAs (miRNAs) are a type of endogenous noncoding small RNAs involved in the regulation of multiple biological processes. Recently, miR-29 was found to participate in myogenesis. However, the underlying mechanisms by which miR-29 promotes myogenesis have not been identified. We found here that miR-29 was significantly upregulated with age in postnatal mouse skeletal muscle and during muscle differentiation. Overexpression of miR-29 inhibited mouse C2C12 myoblast proliferation and promoted myotube formation. miR-29 specifically targeted Akt3, a member of the serine/threonine protein kinase family responsive to growth factor cell signaling, to result in its post-transcriptional downregulation. Furthermore, knockdown of Akt3 by siRNA significantly inhibited the proliferation of C2C12 cells, and conversely, overexpression of Akt3 suppressed their differentiation. Collectively and given the inverse endogenous expression pattern of rising miR-29 levels and decreasing Akt3 protein levels with age in mouse skeletal muscle, we propose a novel mechanism in which miR-29 modulates growth and promotes differentiation of skeletal muscle through the post-transcriptional downregulation of Akt3.
IMPORTANCE Chronic subdural hematoma (CSDH) is a trauma-associated condition commonly found in elderly patients. Surgery is currently the treatment of choice, but it carries a significant risk of recurrence and death. Nonsurgical treatments remain limited and ineffective. Our recent studies suggest that atorvastatin reduces hematomas and improves the clinical outcomes of patients with CSDH.OBJECTIVE To investigate the safety and therapeutic efficacy of atorvastatin to nonsurgically treat patients with CSDH. DESIGN, SETTING, AND PARTICIPANTSThe Effect of Atorvastatin on Chronic Subdural Hematoma (ATOCH) randomized, placebo-controlled, double-blind phase II clinical trial was conducted in multiple centers in China from February 2014 to November 2015. For this trial, we approached 254 patients with CSDH who received a diagnosis via a computed tomography scan; of these, 200 (78.7%) were enrolled because 23 patients (9.1%) refused to participate and 31 (12.2%) were disqualified.INTERVENTIONS Patients were randomly assigned to receive either 20 mg of atorvastatin or placebo daily for 8 weeks and were followed up for an additional 16 weeks. MAIN OUTCOMES AND MEASURESThe primary outcome was change in hematoma volume (HV) by computed tomography after 8 weeks of treatment. The secondary outcomes included HV measured at the 4th, 12th, and 24th weeks and neurological function that was evaluated using the Markwalder grading scale/Glasgow Coma Scale and the Barthel Index at the 8th week.RESULTS One hundred ninety-six patients received treatment (169 men [86.2%]; median [SD] age, 63.6 [14.2] years). The baseline HV and clinical presentations were similar between patients who were taking atorvastatin (98 [50%]) and the placebo (98 [50%]). After 8 weeks, the HV reduction in patients who were taking atorvastatin was 12.55 mL more than those taking the placebo (95% CI, 0.9-23.9 mL; P = .003). Forty-five patients (45.9%) who were taking atorvastatin significantly improved their neurological function, but only 28 (28.6%) who were taking the placebo did, resulting in an adjusted odds ratio of 1.957 for clinical improvements (95% CI, 1.07-3.58; P = .03). Eleven patients (11.2%) who were taking atorvastatin and 23 (23.5%) who were taking the placebo underwent surgery during the trial for an enlarging hematoma and/or a deteriorating clinical condition (hazard ratio, 0.47; 95% CI, 0.24-0.92; P = .03). No significant adverse events were reported.CONCLUSIONS AND RELEVANCE Atorvastatin may be a safe and efficacious nonsurgical alternative for treating patients with CSDH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.