The peening solution treatment was performed on AC4CH aluminum alloy by ultra-high-temperature and high-pressure cavitation (UTPC) processing, and the peening natural aging was examined. Furthermore, peening artificial aging treatment by low-temperature and low-pressure cavitation (LTPC) was performed, and the time course of peening natural aging and peening artificial aging were compared and investigated. It was found that when the AC4CH alloy is processed for an appropriate time by UTPC processing, compressive residual stress is applied and natural aging occurs. In addition, the UTPC processing conditions for peening natural aging treatment with high compressive residual stress and surface hardness were clarified. After peening artificial aging by LTPC processing, the compressive residual stress decreases slightly over time, but the compression residual stress becomes constant by peening natural aging through UTPC treatment. In contrast, it was found that neither natural nor artificial peening natural aging occurs after processing for a short time.
The present work demonstrates a technique for the hot forging of metal surfaces in water at 1000 °C or higher, termed energy-intensive multifunctional cavitation (EI-MFC). In this process, the energy of cavitation bubbles is maximized, following which these bubbles collide with the metal surface. This technique will be employed to improve the surface structure of CM186LC/DS, a Ni-based columnar crystalline superalloy used to manufacture the rotor blades of jet engines and gas turbines that are exposed to high-temperature oxidizing environments, with the aim of improving creep strength. EI-MFC processing induces compressive residual stress in the metal that prevents the occurrence of surface cracks and also increases surface hardness, improves corrosion resistance, and increases the coefficient of friction. The latter effect can enhance the adhesion of thermal barrier coatings applied to Ni-based superalloys by thermal spraying. The technology demonstrated herein can be applied to present-day jet engine and gas turbine components and also to the production of hydrogen combustion turbines operating at 1700 °C with higher combustion efficiency than the current 1500 °C class gas turbines. In addition, the high processing energy obtained using the EI-MFC technique has the potential to flatten rough surfaces resulting from the stacking pitches of various metals manufactured using three-dimensional printers, and so improve surface strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.