In demyelinating diseases including multiple sclerosis (MS), neural stem cells (NSCs) can replace damaged oligodendrocytes if the local microenvironment supports the required differentiation process. Although chitinase-like proteins (CLPs) form part of this microenvironment, their function in this differentiation process is unknown. Here, we demonstrate that murine Chitinase 3-like-3 (Chi3l3/Ym1), human Chi3L1 and Chit1 induce oligodendrogenesis. In mice, Chi3l3 is highly expressed in the subventricular zone, a stem cell niche of the adult brain, and in inflammatory brain lesions during experimental autoimmune encephalomyelitis (EAE). We find that silencing Chi3l3 increases severity of EAE. We present evidence that in NSCs Chi3l3 activates the epidermal growth factor receptor (EGFR), thereby inducing Pyk2-and Erk1/2- dependent expression of a pro-oligodendrogenic transcription factor signature. Our results implicate CLP-EGFR-Pyk2-MEK-ERK as a key intrinsic pathway controlling oligodendrogenesis.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease that disproportionately affects young adults, leading to disability and high costs to society. Infiltration of T cells and monocytes into the central nervous system (CNS) is critical for disease initiation and progression. However, despite a great deal of effort the molecular mechanisms by which immune cells initiate and perpetuate CNS damage in MS have not yet been elucidated. In experimental autoimmune encephalomyelitis (EAE), an animal model of MS, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by pathogenic Th1 and Th17 cells is critical for the recruitment of monocytes into the CNS during the initial stage of disease. We and others have recently shown that, compared with healthy individuals, MS patients have greater numbers of CD4 and CD8 T cells that produce GM-CSF. Here, we describe the expression of GM-CSF and its receptor, GM-CSFR, in normal brain and MS lesions. Our data show that in acute and chronic MS lesions, microglia and astrocytes have upregulated expression of GM-CSFR; in addition, we show that GM-CSF-associated molecules are also upregulated in MS lesions. These findings further strengthen the argument that GM-CSF signaling contributes to MS pathogenesis.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is widely expressed in the brain, and plays key roles in various cellular processes in response to both extracellular and intracellular stimuli. Here, we explored the role of FAK in cerebellar development. In the mouse cerebellum, FAK was found to be distributed as tiny cytoplasmic aggregates in various neuronal and glial elements, including Purkinje cells (PCs), Bergmann glia (BG), parallel fiber (PF)-terminals and climbing fiber (CF)-terminals. The neuron/glia-specific ablation of FAK impaired cerebellar foliation, such as variable decreases in foliation sizes and the lack of intercrural and precentral fissures. Some of the BG cells became situated ectopically in the molecular layer. Furthermore, the FAK ablation altered the innervation territories of CFs and PFs on PCs. CF innervation regressed to the basal portion of proximal dendrites and somata, whereas ectopic spines protruded from proximal dendrites and PFs expanded their territory by innervating the ectopic spines. Furthermore, the persistence of surplus CFs innervating PC somata caused multiple innervation. When FAK was selectively ablated in PCs, diminished dendritic innervation and persistent somatic innervation by CFs were observed, whereas cerebellar foliation and cell positioning of BG were normally retained. These results suggest that FAK in various neuronal and glial elements is required for the formation of normal histoarchitecture and cytoarchitecture in the cerebellum, and for the construction of proper innervation territory and synaptic wiring in PCs.
Disease modeling with induced pluripotent stem cells (iPSCs) is creating an abundance of phenotypic information that has become difficult to follow and interpret. Here, we report a systematic analysis of research practices and reporting bias in neurological disease models from 93 published articles. We find heterogeneity in current research practices and a reporting bias toward certain diseases. Moreover, we identified 663 CNS cell‐derived phenotypes from 243 patients and 214 controls, which varied by mutation type and developmental stage in vitro. We clustered these phenotypes into a taxonomy and characterized these phenotype–genotype relationships to generate a phenogenetic map that revealed novel correlations among previously unrelated genes. We also find that alterations in patient‐derived molecular profiles associated with cellular phenotypes, and dysregulated genes show predominant expression in brain regions with pathology. Last, we developed the iPS cell phenogenetic map project atlas (iPhemap), an open submission, online database to continually catalog disease phenotypes. Overall, our findings offer new insights into the phenogenetics of iPSC‐derived models while our web tool provides a platform for researchers to query and deposit phenotypic information of neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.