Mouse MT-I (metallothionein-I) transcription is regulated by MTF-1 (metal-response-element-binding transcription factor-1) which is recruited to the promoter in response to zinc. Cr(VI) [chromium(VI)] pretreatment blocks zinc-activation of the endogenous MT-I gene and attenuates zinc-activation of MT-I-promoter-driven luciferase reporter genes in transient transfection assays. Chromatin immunoprecipitation assays revealed that Cr(VI) only modestly reduces recruitment of MTF-1 to the MT-I promoter in response to zinc, but drastically reduces the recruitment of RNA polymerase II. These results suggest that Cr(VI) inhibits the ability of MTF-1 to transactivate this gene in response to zinc. Zinc has recently been shown to induce the formation of a co-activator complex containing MTF-1 and the histone acetyltransferase p300 which plays an essential role in the activation of MT-I transcription. In the present study, co-immunoprecipitation assays demonstrated that Cr(VI) pretreatment blocks the zinc-induced formation of this co-activator complex. Thus Cr(VI) inhibits mouse MT-I gene expression in response to zinc by interfering with the ability of MTF-1 to form a co-activator complex containing p300 and recruiting RNA polymerase II to the promoter.
Cytosolic zinc-binding protein, metallothionein (MT), is normally saturated with Zn. It is thought that Znsaturated MT (Zn-MT) acts as a major intracellular Zn pool. Metal-response element-binding transcription factor-1 (MTF-1) plays an important role in Zn-mediated MT transcription. Here, we showed that degradation of Zn-MT activates MTF-1. We measured activated MTF-1 using an electrophoretic mobility shift assay. Interleukin-6 induced MT expression and increased MTF-1 activity. MTF-1 activation was not observed in MT-overexpressing cells. MT-dependent MTF-1 activation was observed only after treating MT-overexpressing cells with cycloheximide (CHX), a protein synthesis inhibitor. CHX-treatment increased the degradation/synthesis ratio of protein. An increase in the degradation/synthesis ratio for the MT protein is expected to increase the level of labile Zn and activate MTF-1. Recombinant MTF-1 was activated by H 2 O 2 only in the presence of Zn-MT. Oxidative stress activated MTF-1 DNA-binding activity in primary cultured hepatocytes but not in MT-deficient hepatocytes. These findings suggest that degradation of Zn-MT activates MTF-1, and that MT plays an important role in zinc-mediated signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.