Abstract:The morphological discretization is most commonly used for curve and surface discretization, which has been well studied and known to have some important properties, such as preservation of topological properties (e.g., connectivity) of an original curve or surface. To reduce its high computational cost, on the other hand, an approximation of the morphological discretization, called the analytical approximation, was introduced. In this paper, we study the properties of the analytical approximation focusing on discretization of 2D curves and 3D surfaces in the form of y = f (x) (x, y ∈ R) and z = f (x, y) (x, y, z ∈ R). We employ as a structuring element for the morphological discretization, the adjacency norm ball and use only its vertices for the analytical approximation. We show that the discretization of any curve/surface by the analytical approximation can be seen as the morphological discretization of a piecewise linear approximation of the curve/surface. The analytical approximation therefore inherits the properties of the morphological discretization even when it is not equal to the morphological discretization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.