Recent studies indicate that long interspersed nuclear element-1 (L1) are mobilized in the genome of human neural progenitor cells and enhanced in Rett syndrome and ataxia telangiectasia. However, whether aberrant L1 retrotransposition occurs in mental disorders is unknown. Here, we report high L1 copy number in schizophrenia. Increased L1 was demonstrated in neurons from prefrontal cortex of patients and in induced pluripotent stem (iPS) cell-derived neurons containing 22q11 deletions. Whole-genome sequencing revealed brain-specific L1 insertion in patients localized preferentially to synapse-and schizophrenia-related genes. To study the mechanism of L1 transposition, we examined perinatal environmental risk factors for schizophrenia in animal models and observed an increased L1 copy number after immune activation by poly-I:C or epidermal growth factor. These findings suggest that hyperactive retrotransposition of L1 in neurons triggered by environmental and/or genetic risk factors may contribute to the susceptibility and pathophysiology of schizophrenia.
In an effort to clarify the life cycle of HCV, the HCV genome in liver biopsies taken from chronic active hepatitis C patients undergoing interferon treatment was investigated. Molecular cloning by long distance reverse-transcription polymerase chain reaction (RT-PCR) revealed that the HCV genome in two patients with high viral loads in the liver had in-frame deletions of approximately 2 kb between E1 and NS2, which encode the E1-NS2 fusion protein and six other HCV proteins: core, NS3, NS4A, NS4B, NS5A, and NS5B. Among the remaining 21 chronic active hepatitis C patients, these types of deletion were found in another two patients and in two hepatocellular carcinoma patients. Out-of-frame deletions in the structural region were isolated from the other five patients, but the dominant RT-PCR products were non-truncated genomes. Retrospective analysis of a series of serum samples taken from a patient carrying the subgenome with the in-frame deletion revealed that both the subgenome and the full genome persisted through the 2-year period of investigation, with the subgenome being predominant during this period. Sequence analysis of the isolated cDNA suggested that both the subgenome and the full genome evolved independently. Western blotting analysis of HCV proteins from the HCV subgenome indicated that they were processed in the same way as those from the full genome. HCV subgenomes thus appear to be involved in the HCV life cycle.
Unraveling the epigenetic status of neuronal cells in the brain is critical to our understanding of the pathophysiology of psychiatric disorders, which may reflect a complex interaction between genetic and environmental factors. Several epigenetic studies of mood disorders have been conducted with postmortem brains. However, proper interpretation of the results is hampered by our scant understanding of the effects of mood stabilizers on the epigenetic status of neuronal cells. We performed both comprehensive and gene-specific analyses to examine DNA methylation in human neuroblastoma SK-N-SH cells treated with three mood stabilizers: lithium, valproate and carbamazepine. Measurement of the level of DNA methylation of about 27 000 CpG sites revealed a profound epigenetic effect of lithium, compared with the two other mood stabilizers. In addition, we found that the mood stabilizers have common epigenetic targets and a propensity to increase DNA methylation. Gene-specific analysis involved detailed analysis of the methylation of promoter regions of SLC6A4 and BDNF, both of which have been reported to show altered DNA methylation in bipolar disorder patients or suicide victims, by extensive bisulfite sequencing. We did not observe significant changes in DNA methylation at BDNF promoter IV. However, we found that CpG sites of SLC6A4, which were hypermethylated in patients with bipolar disorder, were hypomethylated in the neuroblastoma cells treated with mood stabilizers. Our results will contribute to a better understanding of the epigenetic changes associated with mood disorders, and they also provide new insight into the mechanisms of action of mood stabilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.