The large development of fibre Bragg gratings (FBGs) over decades has made this kind of structures one of the most mature optical fibre sensing technologies existing today, demonstrating key features for a very wide range of applications. FBG sensors are fragile and must be normally protected for real-field applications, although challenging packaging designs are required to mitigate temperature-strain cross-sensitivity issues. Here, a polydimethylsiloxane (PDMS) packaging with a microarray structure that provides gecko-inspired dry adhesion is proposed for strain-free FBG-based temperature sensing. Besides offering protection, the PDMS packaging with an embedded polyamide capillary damps the mechanical strain transferred to the optical fibre, providing FBG-based temperature sensing with a negligible impact of strain. In addition, the microarray structure imprinted on one surface of the packaging provides gecko-inspired dry adhesion based on van der Waals forces. This feature enables the packaged optical fibre sensor to be attached and detached dynamically to nearly any kind of smooth surface, leaving no residuals in the monitored structure. Experimental results verify a fast and accurate temperature response of the sensor with highly mitigated impact of residual strain. The proposed packaged sensor can be used in application where glue is not allowed nor recommendable to be used.
A polydimethylsiloxane packaging for fiber Bragg gratings is proposed to mitigate strain transfer and provide self-adhesion to structures. Using no glue, results show strong adhesion of the packaging and temperature sensing with >95% strain reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.