Activation of cardiac muscarinic receptors by vagal stimulation decreases cardiac work, which may have a protective effect against ischemic injury. To determine whether cardiac muscarinic receptors contribute to the mechanisms of preconditioning effects, we examined the effect of carbachol on ischemia/reperfusion damage and the effect of vagotomy on cardioprotection induced by ischemic preconditioning. Rats were subjected to 30 min of left coronary artery occlusion followed by 30-min reperfusion in situ. Pre-conditioning was induced by three cycles of 2-min coronary artery occlusion and, subsequently by 5 min of reperfusion. The incidence of ischemic arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), and the development of myocardial infarction were markedly reduced by the preconditioning. Carbachol infusion (4 micrograms/kg per min) delayed the occurrence of VT and VF during ischemia and reduced the infarct size. Compared with non-ischemic left ventricle, the cyclic guanosine monophosphate (GMP) content in the ischemic region of the left ventricle was decreased by ischemia/reperfusion, whereas the cyclic adenosine monophosphate (AMP) content of this region was increased. These changes were reversed by preconditioning. Similar changes in cyclic GMP and AMP content in the ischemic region were seen in rats undergoing carbachol treatment. These results suggest the possible contribution of muscarinic receptor stimulation to preconditioning. Vagotomy prior to preconditioning diminished the antiarrhythmic effects, whereas it did not block the anti-infarct effect afforded by pre-conditioning. Vagotomy abolished the preconditioning effect on the tissue cyclic GMP, but it did not attenuate the decrease in tissue cyclic AMP. The results suggest that muscarinic stimulation exerts preconditioning-mimetic protective effects in ischemic/reperfused hearts, but that a contribution of reflective vagal activity to the mechanism for preconditioning is unlikely.
Aims
Enteropeptidase is a serine protease localized on the duodenal brush border that catalyzes the conversion of inactive trypsinogen into active trypsin, thereby regulating protein breakdown in the gut. We evaluated the effects of SCO‐792, a novel enteropeptidase inhibitor, in mice.
Materials and methods
In vivo inhibition of enteropeptidase was evaluated via an oral protein challenge. Pharmacological effects were evaluated in normal mice, in diet‐induced obese (DIO) mice and in obese and diabetic ob/ob mice.
Results
A single oral administration of SCO‐792 inhibited plasma branched‐chain amino acids (BCAAs) in an oral protein challenge test in mice, indicating in vivo inhibition of enteropeptidase. Repeated treatment with SCO‐792 induced reduction in food intake and decrease in body weight in DIO and ob/ob mice. Plasma FGF21 levels were increased in SCO‐792‐treated DIO mice, an observation that was probably independent of reduction in food intake. Hyperglycaemia was markedly improved in SCO‐792‐treated ob/ob mice. A hyperinsulinaemic‐euglycaemic clamp study revealed improved muscle insulin sensitivity in SCO‐792‐treated ob/ob mice. SCO‐792 also improved plasma and liver lipid profiles and decreased plasma alanine transaminase, suggesting a potential treatment for liver diseases. Dietary supplementation with essential amino acids attenuated the effect of SCO‐792 on reduction in food intake and decrease in body weight in normal mice, suggesting a pivotal role for enteropeptidase in these biological phenomena.
Conclusions
SCO‐792 inhibited enteropeptidase in vivo, reduced food intake, decreased body weight, increased insulin sensitivity, improved glucose and lipid control, and ameliorated liver parameters in mouse models with obesity and/or diabetes. SCO‐792 may exhibit similar effects in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.