Single-mode lasing in whispering-gallery mode (WGM) microresonators is challenging to achieve. In bottle microresonators, the highly non-degenerated WGMs are spatially well-separated along the long-axis direction and provide mode-selection capability. In this work, by engineering the pump intensity to modify the spatial gain profiles of bottle microresonators, we demonstrate a simple and general approach to realizing single-mode WGM lasing in polymer bottle microresonators. The pump intensity is engineered into an interference distribution on the bottle microresonator surface. By tuning the spacing between axial positions of the interference pump patterns, the mode intensity profiles of single-bottle WGMs can be spatially overlapped with the interference stripes, intrinsically enabling single-mode lasing and selection. Attractive advantages of the system, including high side-mode suppression factors >20 dB, large spectral tunability >8 nm, low-lasing threshold and reversible control, are presented. Our demonstrated approach may have a variety of promising applications, ranging from tunable single-mode lasing and sensing to nonlinear optics.
Due to the lack of mode selection capability, single whispering-gallery-mode (WGM) lasing is a challenge to achieve. In bottle microresonators, the highly nondegenerated WGMs are spatially well-separated along the long-axis direction and provide mode selection according to their axial mode numbers. In this work, we use a loss-engineering approach to suppress the higher-order WGMs and demonstrate single-mode lasing emission in small polymer bottle microresonators. The fiber tapers are not only used to couple pump light into the bottle microresonators to excite the WGMs but also to bring optical losses that are induced from the diameter mismatch between fiber tapers and microresonators. By adjusting the coupling positions, the diameters of fiber tapers, and the coupling angles, single fundamental-mode lasing is efficiently generated with side-mode suppression factors over 15 dB. Our loss-engineering approach is convenient just by moving the fiber taper and may find promising applications in miniature tunable single-mode lasers and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.