Electromagnetic ion cyclotron (EMIC) waves constitute a significant loss process of energetic protons and sub-relativistic electrons through pitch-angle scattering by wave-particle interactions (e.g., Anderson et al., 1992aAnderson et al., , 1992bThorne, 2010). These interactions contribute to the generation of the isolated proton auroras at subauroral latitudes (e.g.,
Chorus waves, among the most intense electromagnetic emissions in the Earth’s magnetosphere, magnetized planets, and laboratory plasmas, play an important role in the acceleration and loss of energetic electrons in the plasma universe through resonant interactions with electrons. However, the spatial evolution of the electron resonant interactions with electromagnetic waves remains poorly understood owing to imaging difficulties. Here we provide a compelling visualization of chorus element wave–particle interactions in the Earth’s magnetosphere. Through in-situ measurements of chorus waveforms with the Arase satellite and transient auroral flashes from electron precipitation events as detected by 100-Hz video sampling from the ground, Earth’s aurora becomes a display for the resonant interactions. Our observations capture an asymmetric spatial development, correlated strongly with the amplitude variation of discrete chorus elements. This finding is not theoretically predicted but helps in understanding the rapid scattering processes of energetic electrons near the Earth and other magnetized planets.
the brightness of aurorae in earth's polar region often beats with periods ranging from sub-second to a few tens of a second. past observations showed that the beat of the aurora is composed of a superposition of two independent periodicities that co-exist hierarchically. However, the origin of such multiple time-scale beats in aurora remains poorly understood due to a lack of measurements with sufficiently high temporal resolution. By coordinating experiments using ultrafast auroral imagers deployed in the Arctic with the newly-launched magnetospheric satellite Arase, we succeeded in identifying an excellent agreement between the beats in aurorae and intensity modulations of natural electromagnetic waves in space called "chorus". In particular, sub-second scintillations of aurorae are precisely controlled by fine-scale chirping rhythms in chorus. The observation of this striking correlation demonstrates that resonant interaction between energetic electrons and chorus waves in magnetospheres orchestrates the complex behavior of aurora on earth and other magnetized planets.
Pulsating aurorae (PsA) are caused by the intermittent precipitations of magnetospheric electrons (energies of a few keV to a few tens of keV) through wave-particle interactions, thereby depositing most of their energy at altitudes ~ 100 km. However, the maximum energy of precipitated electrons and its impacts on the atmosphere are unknown. Herein, we report unique observations by the European Incoherent Scatter (EISCAT) radar showing electron precipitations ranging from a few hundred keV to a few MeV during a PsA associated with a weak geomagnetic storm. Simultaneously, the Arase spacecraft has observed intense whistler-mode chorus waves at the conjugate location along magnetic field lines. A computer simulation based on the EISCAT observations shows immediate catalytic ozone depletion at the mesospheric altitudes. Since PsA occurs frequently, often in daily basis, and extends its impact over large MLT areas, we anticipate that the PsA possesses a significant forcing to the mesospheric ozone chemistry in high latitudes through high energy electron precipitations. Therefore, the generation of PsA results in the depletion of mesospheric ozone through high-energy electron precipitations caused by whistler-mode chorus waves, which are similar to the well-known effect due to solar energetic protons triggered by solar flares.
[1] The occurrence characteristics of Jovian quasiperiodic (QP) bursts at a VLF range (<10 kHz) were statistically investigated using data from the Galileo spacecraft at low latitudes in the Jovian magnetosphere. The results confirmed that the occurrence of QP bursts is significantly dependent on the phase of planetary rotation rather than the central meridian longitude of the observer seen from Jupiter. It was revealed that the meridional distribution of QP bursts forms a shadow zone in the equatorial region of <30 Jovian radii from Jupiter, similar to that of hectometric radio emissions, where QP bursts are quenched. Based on the ray tracing method, we surveyed the source parameters, which can reproduce the observed shadow zone. It was suggested that the wave mode, source location, and directivity of the radio emissions are as follows: the extraordinary mode is reasonable for QP bursts observed at low latitudes, the source is located around an altitude of ∼10-20 Jovian radii above the polar region, the L value of the source field line is in a range of L > ∼20, and QP bursts could have beaming angles like "filled cone" in a restricted L value range or have a large source L value range with beaming angles like "hollow cones." These results imply that QP bursts observed at low latitudes are generated at f RX surfaces in the polar region and propagate to the equatorial region.Citation: Kimura, T., F. Tsuchiya, H. Misawa, A. Morioka, and H. Nozawa (2010), Occurrence statistics and ray tracing study of Jovian quasiperiodic radio bursts observed from low latitudes,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.