To investigate the role of angiotensin II (Ang II) in hypertension-induced tissue injury, we gave TCV-116 (1 mg/kg per day PO), a nonpeptide Ang II type I receptor antagonist, or enalapril (10 mg/kg per day PO) to deoxycorticosterone acetate (DOCA)-salt hypertensive rats for 3 weeks and examined the effects on tissue mRNA levels for transforming growth factor-01 (TGF-/31) and extracellular matrix components. Tissue mRNA levels were measured by Northern blot analysis. Renal mRNA levels for TGF-/31; types I, III, and IV collagen; and fibronectin in DOCA-salt hypertensive rats were increased by severalfold (P<.01) compared with sham-operated rats. In the aorta of DOCAsalt hypertensive rats, TGF-01 and fibronectin mRNA levels were increased, but types I, III, and IV collagen mRNAs did not increase. In the heart, increased mRNA was found only for fibronectin. Thus, these gene expressions are regulated in T he mechanism of development of hypertensionmediated renal injury remains to be determined, although hypertensive nephrosclerosis is one of the most important causes of end-stage renal failure. 13 Investigations on the effect of angiotensinconverting enzyme (ACE) inhibitors 48 or angiotensin II (Ang II) receptor antagonists 811 on various renal diseases in humans and animals indicate that the reninangiotensin system (RAS) participates in progressive renal injury as well as hypertension. Hemodynamic effects, such as the reduction of intraglomerular pressure by inhibition of the RAS, have been shown to contribute to a renal protective effect. 4 -5 ' 10 However, recent studies have shown that the mechanism of renal protection by ACE inhibitors can also be partly attributed to unknown mechanisms other than the hemodynamic effect. 12 -13 Furthermore, accumulating evidence shows that a local RAS exists in the kidney and supports the notion that an intrarenal RAS, independent of the
Recent evidence indicates that transforming growth factor-beta 1 (TGF-beta 1) plays an important role in renal fibrosis via stimulation of extracellular matrix synthesis. The present study was undertaken to investigate the role of angiotensin II type I receptor (AT1 receptor) in hypertension-induced renal injury. Twenty-two-week-old stroke-prone spontaneously hypertensive rats (SHRSP), which had established hypertension and moderate renal damage, were orally given TCV-116, a selective non-peptide AT1 receptor antagonist (0.1, 1 or 10 mg/kg/day), enalapril (10 mg/kg/day) or vehicle once a day for 10 weeks. At the end point of the treatment, we examined renal function, the gene expressions of TGF-beta 1 and extracellular matrix components in the interstitium [collagen types I (COI) and III (COIII), fibronectin (FN)] and the basement membrane (COIV and laminin), and renal microscopic morphology in rats aged 32 weeks. In vehicle-treated 32 week-old SHRSP with renal dysfunction and nephrosclerosis, renal mRNA levels for TGF-beta 1, COI, COIII, FN, COIV were all several-fold higher than in WKY. Thus, renal TGF-beta 1 gene expression was enhanced in SHRSP, which may contribute to the increased renal expressions of COI, COIII, FN, COIV in SHRSP. Treatment with TCV-116 (0.1 mg/kg/day) in SHRSP, in spite of no reduction of blood pressure, decreased renal mRNA levels for TGF-beta 1, COI, COIII, FN, COIV, being accompanied by the significant decrease in urinary protein and albumin excretion, blood urea nitrogen and plasma creatinine. Treatment with TCV-116 (10 mg/kg/day) in SHRSP decreased mRNAs for TGF-beta 1, COI, COIII, FN and COIV to almost the same levels as WKY, being associated with normalization of urinary protein and albumin excretion and the prevention of nephrosclerosis, as judged by microscopic histological observations. On the other hand, the effects of enalapril (10 mg/kg/day) on the above mentioned mRNA levels, renal function and renal morphology were weaker than those of TCV-116 (10 mg/kg/day) and were as much as TCV-116 (1 mg/kg/day). These results suggest that independently of hypotensive action, AT1 receptor antagonist has a potent renal protective effect by inhibiting the gene expression of renal TGF-beta 1 and extracellular matrix components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.