Japanese satellite for climate change observation, named ADEOS-II, was lost in October 2003. A quick concept study to compensate the loss of ADEOS-II was made. Regarding climate change study, we found the importance to monitor human activity effect for climate change is important as well as to study the natural climate system and variation by global observation. Moreover, the results from previous satellite ADEOS-II suggests the possibility of global observation and human activity monitoring, which requires certain resolution to distinguish regional change. Thus, the concept of the mission objectives is focusing human activity effect on climate change. The new system, named Global Change Observation Mission: GCOM, consists of two satellites. One satellite carrying microwave radiometer: AMSR2 and a scattarometer, and another satellite carrying multi-spectral imaging radiometer: SGLI. These satellites are named GCOM-winds: GCOM-W and GCOM-climate: GCOM-C, respectively. This system will be continued for over 13 years to observe climate change together with other specific Japanese or Japanese joined satellites, namely, Greenhouse gas observation satellites: GOSAT, Global precipitation measurement: GPM with NASA and Earth cloud aerosol and radiation explorer: EarthCARE with ESA. GCOM-W and GCOM-C are proposed to be launched in 2009 and 2010, respectively.
The Centrifuge Rotor (CR) is an artificial gravity generator, which is aiming at launch in 2006 as a portion of the life science experimental facility of the International Space Station (ISS). The CR rotates habitats located radially around the axis and generates centrifugal force, imposing artificial gravity of arbitrary magnitude up to 22.0 m/s2 (about 2.2 g) on the specimens housed in the habitats. The imbalance is caused by the asymmetry of two habitats opposite each other, which brings about change in the mass of the habitats as well as the quasi-static change of the CG of plants and fluids and the dynamic rodent motions in the habitats. The active mass Auto-Balancing System (ABS) is provided for automatic canceling of the above-mentioned imbalance of the rotor. This paper presents the concept and the test results of the ABS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.