When stimulated with antigen, B cells are influenced by T cells to proliferate and differentiate into antibody-forming cells. Since it was reported that soluble factors could replace certain functions of helper T cells in the antibody response, several different kinds of lymphokines and monokines have been reported in B-cell growth and differentiation. Among these, human B-cell differentiation factor (BCDF or BSF-2) has been shown to induce the final maturation of B cells into immunoglobulin-secreting cells. BSF-2 was purified to homogeneity and its partial NH2-terminal amino-acid sequence was determined. These studies indicated that BSF-2 is functionally and structurally unlike other known proteins. Here, we report the molecular cloning, structural analysis and functional expression of the cDNA encoding human BSF-2. The primary sequence of BSF-2 deduced from the cDNA reveals that BSF-2 is a novel interleukin consisting of 184 amino acids.
Self-incompatibility in flowering plants is often controlled by a single nuclear gene (the S-gene) having several alleles. This gene prevents fertilization by self-pollen or by pollen bearing either of the two S-alleles expressed in the style. Sequence analysis shows that three alleles of the S gene of Nicotiana alata encode style glycoproteins with regions of defined homology. Two of the homologous regions also show precise homology with ribonucleases T2 (ref. 4) and Rh (ref. 5). We report here that glycoproteins corresponding to the S1, S2, S3, S6 and S7 alleles isolated from style extracts of N. alata are ribonucleases. These style S-gene-encoded glycoproteins account for most of the ribonuclease activity recovered from style extracts. The ribonuclease specific activity of style extracts of the self-incompatible species N. alata is 100-1,000-fold higher than that of the related self-compatible species N. tabacum. These observations implicate ribonuclease activity in the mechanism of gametophytic self-incompatibility.
P1 nuclease from Penicillium citrinum is a zinc dependent glyco‐enzyme consisting of 270 amino acid residues which cleaves single‐stranded RNA and DNA into 5′‐mononucleotides. The X‐ray structure of a tetragonal crystal form of the enzyme with two molecules per asymmetric unit has been solved at 3.3 and refined at 2.8 A resolution to a crystallographic R‐factor of 21.6%. The current model consists of 269 amino acid residues, three Zn ions and two N‐acetyl glucosamines per subunit. The enzyme is folded very similarly to phospholipase C from Bacillus cereus, with 56% of the structure displaying an alpha‐helical conformation. The three Zn ions are located at the bottom of a cleft and appear to be rather inaccessible for any phosphate group in double‐stranded RNA or DNA substrates. A crystal soaking experiment with a dinucleotide gives clear evidence for two mononucleotide binding sites separated by approximately 20 A. One site shows binding of the phosphate group to one of the zinc ions. At both sites there is a hydrophobic binding pocket for the base, but no direct interaction between the protein and the deoxyribose. A cleavage mechanism is proposed involving nucleophilic attack by a Zn activated water molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.