High-MW CL HA exerts potential chondroprotective effects and produces superior friction coefficients. Our results suggest that HA600 delays the progression of OA effectively and improves joint lubrication significantly.
The aim of this study was to examine the effects of chronic running exercise on degenerative-regenerative processes in the hindlimb muscles of dystrophin-deficient mdx mice. The number of large-sized degenerative-regenerative groups (DRGs) was markedly decreased, whereas that of small-sized DRGs was unchanged by exercise. Expression of insulin-like growth factor-1 (Igf1), as well as a myogenic factor MyoD (Myod1), was downregulated in mdx muscles by exercise. The downregulation of Igf1 may well correlate with the decrease in the population of early regenerating fibers, which existed predominantly in DRGs, because IGF-1 was mainly localized in these fibers. Our data indicate that chronic exercise may accelerate the active cycle of degeneration-regeneration in mdx skeletal muscles. This means that mdx skeletal muscles can temporarily cope with work-induced injury by enhancing muscle regeneration and repair, but we speculate that an early decline of IGF-1 will accelerate age-dependent muscle wasting and weakness in the later stage of life in mdx mice.
To analyze the genetic and biomolecular mechanisms underlying cartilage repair, an optimized mouse model of osteochondral repair is required. Although several models of articular cartilage injury in mice have recently been established, the articular surface in adult C57Bl/6 mice heals poorly. Since C57Bl/6 mice are the most popular strain of genetically manipulated mice, an articular cartilage repair model using C57Bl/6 mice would be helpful for analysis of the mechanisms of cartilage repair. The purpose of this study was to establish a cartilage repair model in C57Bl/6 mice using immature animals. To achieve this goal, fullthickness injuries were generated in 3-week-old (young), 4-week-old (juvenile), and 8-week-old (adult) C57Bl/6 mice. To investigate the reproducibility and consistency of full-thickness injuries, mice were sacrificed immediately after operation, and cartilage thickness at the patellar groove, depth of the cartilage injury, cross-sectional width, and cross-sectional area were compared among the three age groups. The depth of cartilage injury/cartilage thickness ratio (%depth) and the coefficient of variation (CV) for each parameter were also calculated. At 8 weeks postoperatively, articular cartilage repair was assessed using a histological scoring system. With respect to the reproducibility and consistency of full-thickness injuries, cartilage thickness, depth of cartilage injury, and cross-sectional area were significantly larger in young and juvenile mice than in adult mice, whereas cross-sectional width and %depth were almost equal among the three age groups. CVs of %depths were less than 10% in all groups. With respect to articular cartilage repair, young and juvenile mice showed superior results. In conclusion, we established a novel cartilage repair model in C57Bl/6 mice. This model will be valuable in achieving mechanistic insights into the healing process of the joint surface, as it will facilitate the use of genetically modified mice, which are most commonly developed on a C57Bl/6 background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.