Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescenceassociated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesityinduced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E 2 (PGE 2) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE 2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans. SIGNIFICANCE: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE 2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE 2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC.
Accumulating evidence indicates that the senescence-associated secretory phenotype (SASP) contributes to many aspects of physiology and disease. Thus, controlling the SASP will have tremendous impacts on our health. However, our understanding of SASP regulation is far from complete. Here, we show that cytoplasmic accumulation of nuclear DNA plays key roles in the onset of SASP. Although both DNase2 and TREX1 rapidly remove the cytoplasmic DNA fragments emanating from the nucleus in pre-senescent cells, the expression of these DNases is downregulated in senescent cells, resulting in the cytoplasmic accumulation of nuclear DNA. This causes the aberrant activation of cGAS-STING cytoplasmic DNA sensors, provoking SASP through induction of interferon-β. Notably, the blockage of this pathway prevents SASP in senescent hepatic stellate cells, accompanied by a decline of obesity-associated hepatocellular carcinoma development in mice. These findings provide valuable new insights into the roles and mechanisms of SASP and possibilities for their control.
Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1β (IL-1β)– and IL-1β–dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal–mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1β–dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1β was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet–fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive T reg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.