The widely spanning sensory cortex receives inputs from the disproportionately smaller nucleus of the thalamus, which results in a wide variety of travelling distance among thalamic afferents. Yet, latency from the thalamus to a cortical cell is remarkably constant across the cortex (typically, Ϸ2 ms). Here, we found a mechanism that produces invariability of latency among thalamocortical afferents, irrespective of the variability of travelling distances. The conduction velocity (CV) was calculated from excitatory postsynaptic currents recorded from layer IV cells in mouse thalamocortical slices by stimulating the ventrobasal nucleus of the thalamus (VB) and white matter (WM). In adults, the obtained CV for VB to WM (CVVB-WM; 3.28 ؎ 0.11 m͞s) was Ϸ10 times faster than that of WM to layer IV cells (CVWM-IV; 0.33 ؎ 0.05 m͞s). The CVVB-WM was confirmed by recording antidromic single-unit responses from VB cells by stimulating WM. Exclusion of synaptic delay from CVWM-IV did not account for the 10-fold difference of CV. By histochemical staining, it was revealed that VB to WM was heavily myelinated, whereas in the cortex staining became substantially weaker. We also found that such morphological and physiological characteristics developed in parallel and were accomplished around postnatal week 4. Considering that VB to WM is longer and more variable in length among afferents than is the intracortical region, such an enormous difference of CV makes conduction time heavily dependent on the length of intracortical region, which is relatively constant. Our finding may well provide a general strategy of connecting multiple sites irrespective of distances in the brain.T he timing of synaptic inputs onto postsynaptic neurons is of great importance, not only in the information processing (1-6) but also in the subsequent plasticity of the input (7-10). Yet, the expanse of cortex, in contrast with the disproportionately smaller nucleus of the thalamus (11, 12), makes the thalamocortical afferent trajectory crooked, resulting in a variety of travelling distances among the afferents. Nevertheless, a spike in thalamic cells arrives in cortical cells within a narrow window of time that peaks Ϸ2 ms (range: Ϸ1-4 ms), and this timing window seems well preserved, in some cases, even across the modality (visual, auditory, and somatosensory; refs. 2 and 13-16). This observation raises the following question: how is the timing of input (latency) kept within a narrow window of time, irrespective of travelling distances? Interestingly, white matter (WM) stimulation evokes monosynaptic responses in the cortex, whose latency falls in a window of time similar to that of thalamic stimulation, although the travelling distance is less than half. We therefore systematically examined the conduction velocity (CV) of thalamocortical fibers and found that the CV along this axon is not homogeneous. Instead, the CV of thalamus to WM was 10ϫ faster than the rest of the afferents, because of a selective myelination. We also found that, in newborn anima...
Optical recording with a voltage-sensitive dye was performed in visual cortical slices of the rat to determine the effect of acetylcholine (ACh) on the spread of excitation. In the presence of ACh, the spread of excitation initiated by stimulation at the white matter/layer VI (WM/VI) was greatly suppressed throughout the cortex, with less suppression in the middle layers. By comparing the effect of ACh with that of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the fraction of the synaptic component that was sensitive to ACh was evaluated. ACh suppressed approximately 40-50% (maximum 55.8%, n = 11) of the initial synaptic component in the superficial and deep layers. In the middle, however, the effect was weakest and only approximately 20-30% (minimum 20.9%, n = 11) of the initial synaptic component was suppressed. On the basis of histological analysis, the region with the weakest ACh effect extended from upper V to lower II/III. To identify the site of ACh action in terms of pre- versus postsynaptic localization, exogenous glutamate was applied. Because ACh did not suppress the excitation induced by glutamate, the site of the ACh action was indicated to be presynaptic. When layer II/III was stimulated instead of WM/VI, the suppression was uniform throughout the cortex. A muscarinic receptor antagonist, atropine, blocked the suppression by ACh. In conclusion, our results indicate the following two points. First, ACh strongly suppresses intracortical connectivity through presynaptic muscarinic receptors. Secondly, in contrast to the intracortical connection, some group(s) of fibres, possibly thalamocortical afferents that arise from white matter and terminate in the middle cortical layers are suppressed much less by ACh. While ACh has been reported to have confusingly diverse effects, e.g. direct depolarization and hyperpolarization as well as synaptic facilitation and suppression, its effect on the propagation of excitation is very clear; suppression on intracortical connection, leaving thalamocortical inputs rather intact. We postulate that cholinergic innervation enables the afferent input to have a relatively dominant effect in the cortex.
Simultaneous whole cell recordings from monosynaptically connected cortical cells were performed with the use of two patch pipettes to determine the effect of acetylcholine (ACh) on both excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in cultured neurons from rat visual cortex. For 96% of EPSPs and 73% of IPSPs, ACh potently suppressed postsynaptic potentials in a dose-dependent manner. The estimated effective concentrations to produce half maximal response (EC50S) were 30 and 210 nM for EPSPs and IPSPs, respectively. To identify what subtypes of ACh receptors are involved in the suppression of postsynaptic potentials, three different, partially selective muscarinic receptor antagonists were used. According to the comparison of estimated Schild coefficients for each of the three antagonists against the suppression by ACh, EPSPs are most likely mediated by m4 receptors, and IPSPs by m1 receptors. When cells were treated with pertussis toxin, which inactivates m2 and m4 receptors while leaving m1, m3, and m5 receptors intact, 7 of 8 EPSPs were resistant to ACh whereas 8 of 12 IPSPs were still suppressed by ACh. This result supports the interpretation that the suppression of EPSPs was mediated by m4 receptors and that of IPSPs by m1 receptors. To obtain an indication as to whether ACh works presynaptically or postsynaptically, 1/CV2 analysis was carried out. The resultant diagonal alignment of the ratio of 1/CV2 plotted against the ratio of the amplitude of postsynaptic potentials suggests a presynaptic mechanism for the suppression of both EPSPs and IPSPs. In addition, in many cases a large synaptic suppression was observed without an obvious change in the input resistance. Furthermore, in one case where a single inhibitory driver cell was recorded with three different follower cells sequentially, none of the three IPSPs was suppressed by ACh, providing additional support for the presynaptic localization of ACh action. These results suggest that in cerebral cortex ACh has, in addition to its direct facilitatory effect via m3 pharmacology, a suppressive effect on EPSPs and IPSPs via m1 and m4 muscarinic receptors, respectively, probably with a presynaptic site of action. Separation of the actions of ACh into different receptor-second messenger pathways with potential for independent interactions with other neuromodulatory systems may be an important aspect of the mechanism of cholinergic regulation of functional state in cortex. Separation of cholinergic effects at different receptors might also offer a means for selective pharmacological intervention in disorders of sleep or memory.
Brain-derived neurotrophic factor (BDNF) has been reported to play a critical role in modulating plasticity in developing sensory cortices. In the visual cortex, maturation of neuronal circuits involving GABAergic neurons has been shown to trigger a critical period. To date, several classes of GABAergic neurons are known, each of which are thought to play distinct functions. Of these, parvalbumin (PV)-containing, fast-spiking (FS) cells are suggested to be involved in the initiation of the critical period. Here, we report that BDNF plays an essential role in the normal development of PV-FS cells during a plastic period in the barrel cortex. We found that characteristic electrophysiological properties of PV-FS cells, such as low spike adaptation ratio, reduced voltage sags in response to hyperpolarization, started to develop around the second postnatal week and attained adult level in several days. We also found that immunoreactivity against PV was also acquired after the similar developmental time course. Then, using BDNF(Ϫ/Ϫ) mice, we found that these electrophysiological as well as chemical properties were underdeveloped or did not appear at all. We conclude BDNF regulates the development of electrophysiological and immunohistochemical characteristics in PV-FS cells. Because BDNF is suggested to regulate the initiation of plasticity, our results strongly indicate that BDNF is involved in the regulation of the critical period by promoting the functional development of PV-FS GABAergic neurons.
Brain-derived neurotrophic factor (BDNF) is a critical modulator of central synaptic functions such as long-term potentiation in the hippocampal and visual cortex. Little is known, however, about its role in the development of excitatory glutamatergic synapses in vivo. We investigated the development of N-methyl-D-aspartate (NMDA) receptor (NMDAR)-only synapses (silent synapses) and found that silent synapses were prominent in acute thalamocortical brain slices from BDNF knockout mice even after the critical period. These synapses could be partially converted to ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-containing ones by adding back BDNF alone to the slice or fully converted to together with electric stimulation without affecting NMDAR transmission. Electric stimulation alone was ineffective under the BDNF knockout background. Postsynaptically applied TrkB kinase inhibitor or calcium-chelating reagent blocked this conversion. Furthermore, the AMPAR C-terminal peptides essential for interaction with PDZ proteins postsynaptically prevented the unmasking of silent synapses. These results suggest that endogenous BDNF and neuronal activity synergistically activate AMPAR trafficking into synaptic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.