SYNOPSISUltrafine metal particles immobilized on fine copolymer particles were produced by reduction of copolymer particles-metal ion complexes. Submicrometer-size copolymer particles containing nitrogen, prepared by emulsifier-free emulsion polymerization, were applied. Transmission electron microscopy (TEM) observation and X-ray diffraction analysis indicated that ultrafine noble metal particles with diameter below 10 nm were formed and uniformly immobilized on the surface of copolymer particles.
The role of protein phosphatase 2B (PP2B/calcineurin) of Saccharomyces cerevisiae in the tolerance to divalent cations was investigated. PP2B-deficient mutants were found to be sensitive to MnCl2, but not to ZnCl2, CuCl2, NiCl2 and CoCl2. By measuring both manganese uptake and its efflux, it was found that the sensitivity of the mutant cells was due to an increase in manganese uptake and that the wild-type cells were able to prevent manganese entry into the cells, rather than export it in a more efficient manner. In the presence of the immunosuppressant FK506, the behavior of wild-type cells became similar to that of PP2B mutants. Out of various divalent cations tested, externally added magnesium ions were able to block manganese uptake in both wild-type and PP2B mutant strains.
Conformational variations of a 10 nm long oligothiophene wire comprising 24 thiophene rings on Au(111), which are related to the various straight and bent shapes of the long wires, have been directly visualized by scanning tunneling microscopy (STM). The local bending angles within the wire are well characterized as s-cis/s-trans configurations of individual thiophene rings. We find that the partial stabilization of the metastable s-cis conformation results in the wire bending, which should be influenced by solvent and substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.