We report two approaches of the fabrication techniques for three-dimensional patterning across vertical sidewalls based on the photolithography. One approach applies the techniques of spray coating the photoresist and the angled exposure. The supposed application is the microenergy source summing the voltage of silicon (Si) photo cells. Since Si photo cell islands on the buried oxide are isolated from each other, the output voltage is summed well without interacting with the common substrate. Wiring using the vertical sidewalls minimizes the shadow region caused by the metal electrode. Another approach introduces a new sheet, which consists of polyvinyl alcohol (PVA) and polyethylene terephthalate layers. The photoresist film is spin-coated and pasted on the substrate making the bridge over the trench. The pattern of the cantilever overhanging the trench is transferred. Then, PVA is dissolved in water and the resist is developed. When the rinse water dries, the cantilever bends and adheres on the vertical sidewall. The minimum pattern width designed is 10 μm and is obtained on the vertical sidewall. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.