NTRK fusions in malignant tumors are therapeutic targets of tyrosine kinase inhibitors. Because they occur only in a small subset of mesenchymal tumors, knowledge regarding the corresponding histology is important to effectively identify patients who could benefit from targeted therapy. In this study, using RNA sequencing, we identified novel NTRK3 fusions involving related partner genes in 2 adult bone and soft tissue tumors that met the current histologic criteria of fibrosarcoma. Case 1 involved the left radius of a 38-year-old woman, whereas in case 2, the right thigh of a 26-year-old man was affected. Histologically, both tumors consisted of the long fascicular growth of long spindle cells. The tumor in case 1 additionally showed focal myxoid changes. Tumor cells had nonpleomorphic, atypical nuclei, and lacked evidence of a specific line of differentiation. Both tumors showed widespread CD34 immunoreactivity and very limited expression of actin. RNA sequencing detected in-frame fusion transcripts of STRN (exon 3)-NTRK3 (exon 14) in case 1 and STRN3 (exon 3)-NTRK3 (exon 14) in case 2, which were confirmed by reverse transcription polymerase chain reaction and Sanger sequencing. Pan-TRK immunostaining was diffusely positive in both cases. Fluorescence in situ hybridization showed signal patterns compatible with NTRK3 rearrangements in both cases, with case 2 additionally harboring a CDKN2A homozygous deletion. This study expands the clinicopathologic and genetic spectrum of sarcomas associated with NTRK fusions, and suggests that CD34-positive fibrosarcoma of bone and soft tissue could be a good candidate for NTRK testing.
Granular cell tumors (GCTs) are rare mesenchymal tumors that exhibit a characteristic morphology and a finely granular cytoplasm. The genetic alterations responsible for GCT tumorigenesis had been unknown until recently, when loss‐of‐function mutations of ATP6AP1 and ATP6AP2 were described. Thus, we performed whole‐exome sequencing, RNA sequencing, and targeted sequencing of 51 GCT samples. From these genomic analyses, we identified mutations in genes encoding vacuolar H+‐ATPase (V‐ATPase) components, including ATP6AP1 and ATP6AP2, in 33 (65%) GCTs. ATP6AP1 and ATP6AP2 mutations were found in 23 (45%) and 2 (4%) samples, respectively, and all were truncating or splice site mutations. In addition, seven other genes encoding V‐ATPase components were also mutated, and three mutations in ATP6V0C occurred on the same amino acid (isoleucine 136). These V‐ATPase component gene mutations were mutually exclusive, with one exception. These results suggest that V‐ATPase function is impaired in GCTs not only by loss‐of‐function mutations of ATP6AP1 and ATP6AP2 but also through mutations of other subunits. Our findings provide additional support for the hypothesis that V‐ATPase dysfunction promotes GCT tumorigenesis.
Li–Fraumeni syndrome (LFS) is a hereditary tumor that exhibits autosomal dominant inheritance. LFS develops in individuals with a pathogenic germline variant of the cancer-suppressor gene, TP53 (individuals with TP53 pathogenic variant). The number of individuals with TP53 pathogenic variant among the general population is said to be 1 in 500 to 20,000. Meanwhile, it is found in 1.6% (median value, range of 0–6.7%) of patients with pediatric cancer and 0.2% of adult patients with cancer. LFS is diagnosed by the presence of germline TP53 pathogenic variants. However, patients can still be diagnosed with LFS even in the absence of a TP53 pathogenic variant if the familial history of cancers fit the classic LFS diagnostic criteria. It is recommended that TP53 genetic testing be promptly performed if LFS is suspected. Chompret criteria are widely used for the TP53 genetic test. However, as there are a certain number of cases of LFS that do not fit the criteria, if LFS is suspected, TP53 genetic testing should be performed regardless of the criteria. The probability of individuals with TP53 pathogenic variant developing cancer in their lifetime (penetrance) is 75% for men and almost 100% for women. The LFS core tumors (breast cancer, osteosarcoma, soft tissue sarcoma, brain tumor, and adrenocortical cancer) constitute the majority of cases; however, various types of cancers, such as hematological malignancy, epithelial cancer, and pediatric cancers, such as neuroblastoma, can also develop. Furthermore, approximately half of the cases develop simultaneous or metachronous multiple cancers. The types of TP53 pathogenic variants and factors that modify the functions of TP53 have an impact on the clinical presentation, although there are currently no definitive findings. There is currently no cancer preventive agent for individuals with TP53 pathogenic variant. Surgical treatments, such as risk-reducing bilateral mastectomy warrant further investigation. Theoretically, exposure to radiation could induce the onset of secondary cancer; therefore, imaging and treatments that use radiation should be avoided as much as possible. As a method to follow-up LFS, routine cancer surveillance comprising whole-body MRI scan, brain MRI scan, breast MRI scan, and abdominal ultrasonography (US) should be performed immediately after the diagnosis. However, the effectiveness of this surveillance is unknown, and there are problems, such as adverse events associated with a high rate of false positives, overdiagnosis, and sedation used during imaging as well as negative psychological impact. The detection rate of cancer through cancer surveillance is extremely high. Many cases are detected at an early stage, and treatments are low intensity; thus, cancer surveillance...
Li‐Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome, and the majority of patients with LFS have been identified with germline variants in the p53 tumor suppressor (TP53) gene. In the past three decades, considerable case reports of TP53 germline variants have been published in Japan. To the best of our knowledge, there have been no large‐scale studies of Japanese patients with LFS. In this study, we aimed to identify Japanese patients with TP53 germline variants and to reveal the characteristics of LFS in Japan. We collected reported cases by reviewing the medical literature and cases diagnosed at the institutions of the authors. We identified 68 individuals from 48 families with TP53 germline pathogenic or likely pathogenic variants. Of the 48 families, 35 (72.9%) had missense variants, most of which were located within the DNA‐binding loop. A total of 128 tumors were identified in the 68 affected individuals. The 128 tumor sites were as follows: breast, 25; bones, 16; brain, 12; hematological, 11; soft tissues, 10; stomach, 10; lung, 10; colorectum, 10; adrenal gland, 9; liver, 4; and others, 11. Unique phenotype patterns of LFS were shown in Japan in comparison with those in a large national LFS cohort study in France. Above all, a higher frequency of patients with stomach cancer was observed in Japanese TP53 germline variant carriers. These results may provide useful information for the clinical management of LFS in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.