We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4(+)CD25(+)Foxp3(+) regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells.
Tago, F., Tsukimoto, M., Nakatsukasa, H. and Kojima. S. Repeated 0.5 Gy Gamma Irradiation Attenuates Autoimmune Disease in MRL-lpr/lpr Mice with Suppression of CD3(+)CD4(-)CD8(-)B220(+) T-Cell Proliferation and with Up-regulation of CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Radiat. Res. 169, 59-66 (2008). MRL-lpr/lpr mice are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated gamma irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation by measuring the weight of the spleen and the population of highly activated CD3(+)CD4(-)CD8(-)B220(+) T cells, which are characteristically involved in autoimmune pathology in these mice. Splenomegaly and an increase in the percentage of CD3(+)CD4(-)CD8(-)B220(+) T cells, which occur with aging in nonirradiated mice, were suppressed in irradiated mice. The high proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells was suppressed in the irradiated animals. The production of autoantibodies and the level of IL6, which activates B cells, were also lowered by radiation exposure. These results indicate that progression of pathology is suppressed by repeated 0.5-Gy gamma irradiation. To uncover the mechanism of the immune suppression, we measured the regulatory T cells, which suppress activated T cells and excessive autoimmune responses. We found that regulatory T cells were significantly increased in irradiated mice. We therefore conclude that repeated 0.5-Gy gamma irradiation suppresses the proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells and the production of IL6 and autoantibodies and up-regulates regulatory T cells.
E6011 appeared to be safe and well tolerated in RA patients during this 12-week treatment period, suggesting that E6011 has an effective clinical response in active RA patients.
Rheumatoid arthritis (RA) is an autoimmune disorder that affects joints and is characterized by synovial hyperplasia and bone erosion associated with neovascularization and infiltration of proinflammatory cells. The introduction of biological disease-modifying anti-rheumatic drugs has dramatically changed the treatment of RA over the last 20 years. However, fewer than 50% of RA patients enter remission, and 10–15% are treatment refractory. There is currently no cure for RA. Fractalkine (FKN, also known as CX3CL1) is a cell membrane-bound chemokine that can be induced on activated vascular endothelial cells. FKN has dual functions as a cell adhesion molecule and a chemoattractant. FKN binds specifically to the chemokine receptor CX3CR1, which is selectively expressed on subsets of immune cells such as patrolling monocytes and killer lymphocytes. The FKN–CX3CR1 axis is thought to play important roles in the initiation of the inflammatory cascade and can contribute to exacerbation of tissue injury in inflammatory diseases. Accordingly, studies in animal models have shown that inhibition of the FKN–CX3CR1 axis not only improves rheumatic diseases but also reduces associated complications, such as pulmonary fibrosis and cardiovascular disease. Recently, a humanized anti-FKN monoclonal antibody, E6011, showed promising efficacy with a dose-dependent clinical response and favorable safety profile in a Phase 2 clinical trial in patients with RA (NCT02960438). Taken together, the preclinical and clinical results suggest that E6011 may represent a new therapeutic approach for rheumatic diseases by suppressing a major contributor to inflammation and mitigating concomitant cardiovascular and fibrotic diseases. In this review, we describe the role of the FKN–CX3CR1 axis in rheumatic diseases and the therapeutic potential of anti-FKN monoclonal antibodies to fulfill unmet clinical needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.