In many barred galaxies, star formation efficiency (SFE) in the bar is lower than those in the arm and bar-end, and its cause has still not been clear. Focusing on the strongly barred galaxy NGC 1300, we investigate the possibility that the presence of a large amount of diffuse molecular gas, which would not contribute to the SF, makes the SFE low in appearance. We examine the relation between the SFE and the diffuse molecular gas fraction (fdif), which is derived using the 12CO(1–0) flux obtained from the interferometer of ALMA 12-m array, which has no sensitivity on diffuse (extended; full width at half-maximum ⪆700 pc) molecular gases due to the lack of ACA, and the total 12CO(1–0) flux obtained from Nobeyama 45-m single-dish telescope. We find that the SFE decreases with increasing fdif. The fdif and SFE are 0.74−0.91 and $0.06\!-\!0.16 ~\rm Gyr^{-1}$ in the bar regions, and 0.28−0.65 and $0.23\!-\!0.96 ~\rm Gyr^{-1}$ in the arm and bar-end regions, respectively. This result supports the idea that the presence of a large amount of diffuse molecular gas makes the SFE low. The suppression of the SFE in the bar has also been seen even when we exclude the diffuse molecular gas components. This suggests that the low SFE appears to be caused not only by a large amount of diffuse molecular gases but also by other mechanisms such as fast cloud–cloud collisions.
Star formation activity depends on galactic-scale environments. To understand the variations in star formation activity, comparing the properties of giant molecular clouds (GMCs) among environments with different star formation efficiency (SFE) is necessary. We thus focus on a strongly barred galaxy to investigate the impact of the galactic environment on the GMCs properties, because the SFE is clearly lower in bar regions than in arm regions. In this paper, we present the 12 CO(1 − 0) observations toward the western bar, arm and bar-end regions of the strongly barred galaxy NGC 1300 with ALMA 12-m array at a high angular resolution of ∼40 pc. We detected GMCs associated with the dark lanes not only in the arm and bar-end regions but also in the bar region, where massive star formation is not seen. Using the CPROPS algorithm, we identified and characterized 233 GMCs across the observed regions. Based on the Kolmogorov-Smirnov test, we find that there is virtually no significant variations in GMC properties (e.g., radius, velocity dispersion, molecular gas mass, and virial parameter) among the bar, arm and bar-end region. These results suggest that systematic differences in the physical properties of the GMCs are not the cause for SFE differences with environments, and that there should be other mechanisms which control the SFE of the GMCs such as fast cloud-cloud collisions in NGC 1300.
We carried out 12 CO(J = 1 − 0) observations toward bar and arm regions of strongly barred galaxies, NGC 1300 and NGC 5383, with the Nobeyama 45-m radio telescope (beamsize of 1 − 2 kpc in the galaxies). The aim of the observations is to qualitatively examine a new scenario for the suppression of star formation in bars based on recent high-resolution numerical simulations: higher speed collisions between molecular clouds in the bar region compared with the arm region suppress the massive star formation. CO emissions were detected from all the regions, indicating the presence of the molecular gases in the strong bars without associating clear HII regions. In both galaxies, the velocity width of the CO line profile tends to be larger in the bar region than in the arm region, which is qualitatively consistent with the new scenario.
We present results of subarcsec Atacama Large Millimeter/submillimeter Array observations of CO(2–1) and CO(5–4) toward a massive main-sequence galaxy at z = 1.45 in the Subaru-XMM/Newton Deep Survey/UDS field, aiming at examining the internal distribution and properties of molecular gas in the galaxy. Our target galaxy consists of the bulge and disk, and has a UV clump in the Hubble Space Telescope images. The CO emission lines are clearly detected, and the CO(5–4)/CO(2–1) flux ratio (R 52) is ∼1, similar to that of the Milky Way. Assuming a metallicity-dependent CO-to-H2 conversion factor and a CO(2–1)/CO(1–0) flux ratio of 2 (the Milky Way value), the molecular gas mass and the gas-mass fraction (f gas = ratio of the molecular gas mass to the molecular gas mass + stellar mass) are estimated to be ∼1.5 × 1011 M ⊙ and ∼0.55, respectively. We find that R 52 peak coincides with the position of the UV clump and that its value is approximately twice higher than the galactic average. This result implies a high gas density and/or high temperature in the UV clump, which qualitatively agrees with a numerical simulation of a clumpy galaxy. The CO(2–1) distribution is well represented by a rotating-disk model, and its half-light radius is ∼2.3 kpc. Compared to the stellar distribution, the molecular gas is more concentrated in the central region of the galaxy. We also find that f gas decreases from ∼0.6 at the galactic center to ∼0.2 at three times the half-light radius, indicating that the molecular gas is distributed in the more central region of the galaxy than stars and seems to be associated with the bulge rather than with the stellar disk.
Cloud-cloud collision (CCC) has been suggested as a mechanism to induce massive star formation. Recent simulations suggest that a CCC speed is different among galactic-scale environments, which is responsible for observed differences in star formation activity. In particular, a high-speed CCC is proposed as a cause of star formation suppression in the bar regions in barred spiral galaxies. Focusing on the strongly barred galaxy NGC 1300, we investigate the CCC speed. We find the CCC speed in the bar and bar-end tend to be higher than that in the arm. The estimated CCC speed is $\sim 20~\rm km~s^{-1}$, $\sim 16~\rm km~s^{-1}$, and $\sim 11~\rm km~s^{-1}$ in the bar, bar-end, and arm, respectively. Although the star formation activity is different in the bar and bar-end, the CCC speed and the number density of high-speed CCC with $> 20~\rm km~s^{-1}$ are high in both regions, implying the existence of other parameters that control the star formation. The difference in molecular gas mass (average density) of the giant molecular clouds (GMCs) between the bar (lower mass and lower density) and bar-end (higher mass and higher density) may be cause for the different star formation activity. Combining with our previous study (Maeda et al.), the leading candidates of causes for the star formation suppression in the bar in NGC 1300 are the presence of a large amount of diffuse molecular gases and high-speed CCCs between low mass GMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.